Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21268491

ABSTRACT

Emerging SARS-CoV-2 variants of concern/interest (VOC/VOI) raise questions about effectiveness of neutralizing antibodies derived from infection or vaccination. As the population immunity to SARS-CoV-2 has become more complex due to prior infection and/or vaccination, understanding the antigenic relationship between variants is needed. Here, we have assessed in total 104 blood specimens from convalescent individuals after infection with early-pandemic SARS-CoV-2 (pre-VOC) or with Alpha, Beta, Gamma or Delta, post-vaccination after double-dose mRNA-vaccination and break through infections due to Delta or Omicron. Neutralization against seven authentic SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta, Omicron) was assessed by plaque-reduction neutralization assay. We found highest neutralization titers against the homologous (previously infecting) variant, with lower neutralization efficiency against heterologous variants. Significant loss of neutralization for Omicron was observed but to a varying degree depending on previously infecting variant (23.0-fold in Beta-convalescence up to 56.1-fold in Alpha-convalescence), suggesting that infection-derived immunity varies, but independent of the infecting variant is only poorly protective against Omicron. Of note, Zeta VOI showed also pronounced escape from neutralization of up to 28.2-fold in Alpha convalescent samples. Antigenic mapping reveals both Zeta and Omicron as separate antigenic clusters. Double dose vaccination showed robust neutralization for Alpha, Beta, Gamma, Delta and Zeta, with fold-change reduction of only 2.8 (for Alpha) up to 6.9 (for Beta). Escape from neutralization for Zeta was largely restored in vaccinated individuals, while Omicron still showed a loss of neutralization of 85.7-fold compared to pre-VOC SARS-CoV-2. Combined immunity from infection followed by vaccination or vaccine breakthrough infection showed highest titers and most robust neutralization for heterologous variants. Breakthrough infection with Delta showed only 12.5-fold reduced neutralization for Omicron, while breakthrough infection with Omicron showed only a 1.5-fold loss for Delta, suggests that infection with antigenically different variants can boost immunity for antigens closer to the vaccine strain. Antigenic cartography showed also a tendency towards broader neutralizing capacity for heterologous variants. We conclude that the complexity of background immunity needs to be taken into account when assessing new VOCs. Development towards separate serotypes such as Zeta was already observed before Omicron emergence, thus other factors than just immune escape must contribute to Omicrons rapid dominance. However, combined infection/vaccination immunity could ultimately lead to broad neutralizing capacity also against non-homologous variants.

SELECTION OF CITATIONS
SEARCH DETAIL
...