Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 10: 298, 2019.
Article in English | MEDLINE | ID: mdl-30915097

ABSTRACT

Soybean [Glycine max (L.) Merr.] seed composition and yield are a function of genetics (G), environment (E), and management (M) practices, but contribution of each factor to seed composition and yield are not well understood. The goal of this synthesis-analysis was to identify the main effects of G, E, and M factors on seed composition (protein and oil concentration) and yield. The entire dataset (13,574 data points) consisted of 21 studies conducted across the United States (US) between 2002 and 2017 with varying treatments and all reporting seed yield and composition. Environment (E), defined as site-year, was the dominant factor accounting for more than 70% of the variation for both seed composition and yield. Of the crop management factors: (i) delayed planting date decreased oil concentration by 0.007 to 0.06% per delayed week (R 2∼0.70) and a 0.01 to 0.04 Mg ha-1 decline in seed yield per week, mainly in northern latitudes (40-45 N); (ii) crop rotation (corn-soybean) resulted in an overall positive impact for both seed composition and yield (1.60 Mg ha-1 positive yield difference relative to continuous soybean); and (iii) other management practices such as no-till, seed treatment, foliar nutrient application, and fungicide showed mixed results. Fertilizer N application in lower quantities (10-50 kg N ha-1) increased both oil and protein concentration, but seed yield was improved with rates above 100 kg N ha-1. At southern latitudes (30-35 N), trends of reduction in oil and increases in protein concentrations with later maturity groups (MG, from 3 to 7) was found. Continuing coordinated research is critical to advance our understanding of G × E × M interactions.

2.
Theor Appl Genet ; 132(2): 501-513, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30446796

ABSTRACT

KEY MESSAGE: Different loci associated with root resistance to F. virguliforme colonization and foliar resistance to phytotoxin damage in soybean. Use of resistant cultivars is the most efficacious approach to manage soybean sudden death syndrome (SDS), caused by Fusarium virguliforme. The objectives of this study were to (1) map the loci associated with root and foliar resistance to F. virguliforme infection and (2) decipher the relationships between root infection, foliar damage, and plot yield. A mapping population consisting of 153 F4-derived recombinant inbred lines from the cross U01-390489 × E07080 was genotyped by SoySNP6 K BeadChip assay. Both foliar damage and F. virguliforme colonization in roots were investigated in the field, and a weak positive correlation was identified between them. Foliar damage had a stronger negative correlation with plot yield than F. virguliforme colonization. Twelve loci associated with foliar damage were identified, and four of them were associated with multiple traits across environments. In contrast, only one locus associated with root resistance to F. virguliforme colonization was identified and mapped on Chromosome 18. It colocalized with the locus associated with foliar damage in the same environment. The locus on Chromosome 6, qSDS6-2, and the locus on Chromosome 18, qSDS18-1, were associated with resistance to SDS phytotoxins and resistance to F. virguliforme colonization of roots, respectively. Both loci affected plot yield. Foliar damage-related traits, especially disease index, are valuable indicators for SDS resistance breeding because of consistency of the identified loci and their stronger correlation with plot yield. The information provided by this study will facilitate marker-assisted selection to improve SDS resistance in soybean.


Subject(s)
Chromosome Mapping , Disease Resistance/genetics , Glycine max/genetics , Plant Diseases/genetics , Fusarium/pathogenicity , Genetic Linkage , Genotype , Phenotype , Plant Diseases/microbiology , Plant Leaves , Plant Roots , Quantitative Trait Loci , Glycine max/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...