Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 143(43): 17975-17982, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34672554

ABSTRACT

Targeted and efficient delivery of nucleic acids with viral and synthetic vectors is the key step of genetic nanomedicine. The four-component lipid nanoparticle synthetic delivery systems consisting of ionizable lipids, phospholipids, cholesterol, and a PEG-conjugated lipid, assembled by microfluidic or T-tube technology, have been extraordinarily successful for delivery of mRNA to provide Covid-19 vaccines. Recently, we reported a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) synthetic delivery system for mRNA relying on amphiphilic Janus dendrimers and glycodendrimers developed in our laboratory. Amphiphilic Janus dendrimers consist of functional hydrophilic dendrons conjugated to hydrophobic dendrons. Co-assembly of IAJDs with mRNA into dendrimersome nanoparticles (DNPs) occurs by simple injection in acetate buffer, rather than by microfluidic devices, and provides a very efficient system for delivery of mRNA to lung. Here we report the replacement of most of the hydrophilic fragment of the dendron from IAJDs, maintaining only its ionizable amine, while changing its interconnecting group to the hydrophobic dendron from amide to ester. The resulting IAJDs demonstrated that protonated ionizable amines play dual roles of hydrophilic fragment and binding ligand for mRNA, changing delivery from lung to spleen and/or liver. Replacing the interconnecting ester with the amide switched the delivery back to lung. Delivery predominantly to liver is favored by pairs of odd and even alkyl groups in the hydrophobic dendron. This simple structural change transformed the targeted delivery of mRNA mediated with IAJDs, from lung to liver and spleen, and expands the utility of DNPs from therapeutics to vaccines.


Subject(s)
Dendrimers/chemistry , RNA, Messenger/chemistry , Amines/chemistry , Animals , Esters/chemistry , Hydrophobic and Hydrophilic Interactions , Ions/chemistry , Mice , Nanoparticles/chemistry , RNA, Messenger/immunology , RNA, Messenger/metabolism , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology , Vaccines, Synthetic/metabolism
2.
J Comput Chem ; 23(1): 172-83, 2002 Jan 15.
Article in English | MEDLINE | ID: mdl-11913384

ABSTRACT

Very large data sets of molecules screened against a broad range of targets have become available due to the advent of combinatorial chemistry. This information has led to the realization that ADME (absorption, distribution, metabolism, and excretion) and toxicity issues are important to consider prior to library synthesis. Furthermore, these large data sets provide a unique and important source of information regarding what types of molecular shapes may interact with specific receptor or target classes. Thus, the requirement for rapid and accurate data mining tools became paramount. To address these issues Pharmacopeia, Inc. formed a computational research group, The Center for Informatics and Drug Discovery (CIDD).* In this review we cover the work done by this group to address both in silico ADME modeling and data mining issues faced by Pharmacopeia because of the availability of a large and diverse collection (over 6 million discrete compounds) of drug-like molecules. In particular, in the data mining arena we discuss rapid docking tools and how we employ them, and we describe a novel data mining tool based on a ID representation of a molecule followed by a molecular sequence alignment step. For the ADME area we discuss the development and application of absorption, blood-brain barrier (BBB) and solubility models. Finally, we summarize the impact the tools and approaches might have on the drug discovery process.


Subject(s)
Combinatorial Chemistry Techniques , Drug Design , Algorithms , Amino Acids/chemistry , Binding Sites , Blood-Brain Barrier/physiology , Computational Biology/methods , Drug Industry/trends , Models, Molecular , Molecular Conformation , Molecular Structure , Pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...