Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; : e0097224, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904411

ABSTRACT

Microbiomes often benefit plants, conferring resistance to pathogens, improving stress tolerance, or promoting plant growth. As potential plant mutualists, however, microbiomes are not a single organism but a community of species with complex interactions among microbial taxa and between microbes and their shared host. The nature of ecological interactions among microbes in the microbiome can have important consequences for the net effects of microbiomes on hosts. Here, we compared the effects of individual microbial strains and 10-strain synthetic communities on microbial productivity and host growth using the common duckweed Lemna minor and a synthetic, simplified version of its native microbiome. Except for Pseudomonas protegens, which was a mutualist when tested alone, all of the single strains we tested were commensals on hosts, benefiting from plant presence but not increasing host growth relative to uninoculated controls. However, 10-strain synthetic microbial communities increased both microbial productivity and duckweed growth more than the average single-strain inoculation and uninoculated controls, meaning that host-microbiome mutualisms can emerge from community interactions among microbes on hosts. The effects of community inoculation were sub-additive, suggesting at least some competition among microbes in the duckweed microbiome. We also investigated the relationship between L. minor fitness and that of its microbes, providing some of the first empirical estimates of broad fitness alignment between plants and members of their microbiomes; hosts grew faster with more productive microbes or microbiomes. IMPORTANCE: There is currently substantial interest in engineering synthetic microbiomes for health or agricultural applications. One key question is how multi-strain microbial communities differ from single microbial strains in their productivity and effects on hosts. We tested 20 single bacterial strains and 2 distinct 10-strain synthetic communities on plant hosts and found that 10-strain communities led to faster host growth and greater microbial productivity than the average, but not the best, single strain. Furthermore, the microbial strains or communities that achieved the greatest cell densities were also the most beneficial to their hosts, showing that both specific single strains and multi-strain synthetic communities can engage in high-quality mutualisms with their hosts. Our results suggest that ~5% of single strains, as well as multi-strain synthetic communities comprised largely of commensal microbes, can benefit hosts and result in effective host-microbe mutualisms.

2.
Evolution ; 78(2): 237-252, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37828761

ABSTRACT

An organism's phenotypes and fitness often depend on the interactive effects of its genome (Gh⁢o⁢s⁢t), microbiome (Gm⁢i⁢c⁢r⁢o⁢b⁢e), and environment (E). These G × G, G × E, and G × G × E effects fundamentally shape host-microbiome (co)evolution and may be widespread, but are rarely compared within a single experiment. We collected and cultured L⁢e⁢m⁢n⁢am⁢i⁢n⁢o⁢r (duckweed) and its associated microbiome from 10 sites across an urban-to-rural ecotone. We factorially manipulated host genotype and microbiome in two environments (low and high zinc, an urban aquatic stressor) in an experiment with 200 treatments: 10 host genotypes × 10 microbiomes × 2 environments. Host genotype explained the most variation in L.m⁢i⁢n⁢o⁢r fitness and traits, while microbiome effects often depended on host genotype (G × G). Microbiome composition predicted G × G effects: when compared in more similar microbiomes, duckweed genotypes had more similar effects on traits. Further, host fitness increased and microbes grew faster when applied microbiomes more closely matched the host's field microbiome, suggesting some local adaptation between hosts and microbiota. Finally, selection on and heritability of host traits shifted across microbiomes and zinc exposure. Thus, we found that microbiomes impact host fitness, trait expression, and heritability, with implications for host-microbiome evolution and microbiome breeding.


Subject(s)
Genome , Microbiota , Genotype , Phenotype , Microbiota/genetics , Zinc
3.
J Evol Biol ; 36(1): 280-295, 2023 01.
Article in English | MEDLINE | ID: mdl-36196911

ABSTRACT

Plants often associate with multiple arthropod mutualists. These partners provide important services to their hosts, but multiple interactions can constrain a plant's ability to respond to complex, multivariate selection. Here, we quantified patterns of genetic variance and covariance among rewards for pollination, biotic defence and seed dispersal mutualisms in multiple populations of Turnera ulmifolia to better understand how the genetic architecture of multiple mutualisms might influence their evolution. We phenotyped plants cultivated from 17 Jamaican populations for several mutualism and mating system-related traits. We then fit genetic variance-covariance (G) matrices for the island metapopulation and the five largest individual populations. At the metapopulation level, we observed significant positive genetic correlations among stigma-anther separation, floral nectar production and extrafloral nectar production. These correlations have the potential to significantly constrain or facilitate the evolution of multiple mutualisms in T. ulmifolia and suggest that pollination, seed dispersal and defence mutualisms do not evolve independently. In particular, we found that positive genetic correlations between floral and extrafloral nectar production may help explain their stable coexistence in the face of physiological trade-offs and negative interactions between pollinators and ant bodyguards. Locally, we found only small differences in G among our T. ulmifolia populations, suggesting that geographic variation in G may not shape the evolution of multiple mutualisms.


Subject(s)
Plant Nectar , Turnera , Animals , Plant Nectar/physiology , Turnera/physiology , Symbiosis , Reproduction , Pollination , Plants , Flowers/genetics
4.
ISME J ; 8(12): 2453-62, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24914799

ABSTRACT

Bacteria containing magnetosomes (protein-bound nanoparticles of magnetite or greigite) are common to many sedimentary habitats, but have never been found before to live within another organism. Here, we show that octahedral inclusions in the extracellular symbionts of the marine bivalve Thyasira cf. gouldi contain iron, can exhibit magnetic contrast and are most likely magnetosomes. Based on 16S rRNA sequence analysis, T. cf. gouldi symbionts group with symbiotic and free-living sulfur-oxidizing, chemolithoautotrophic gammaproteobacteria, including the symbionts of other thyasirids. T. cf. gouldi symbionts occur both among the microvilli of gill epithelial cells and in sediments surrounding the bivalves, and are therefore facultative. We propose that free-living T. cf. gouldi symbionts use magnetotaxis as a means of locating the oxic-anoxic interface, an optimal microhabitat for chemolithoautotrophy. T. cf. gouldi could acquire their symbionts from near-burrow sediments (where oxic-anoxic interfaces likely develop due to the host's bioirrigating behavior) using their superextensile feet, which could transfer symbionts to gill surfaces upon retraction into the mantle cavity. Once associated with their host, however, symbionts need not maintain structures for magnetotaxis as the host makes oxygen and reduced sulfur available via bioirrigation and sulfur-mining behaviors. Indeed, we show that within the host, symbionts lose the integrity of their magnetosome chain (and possibly their flagellum). Symbionts are eventually endocytosed and digested in host epithelial cells, and magnetosomes accumulate in host cytoplasm. Both host and symbiont behaviors appear important to symbiosis establishment in thyasirids.


Subject(s)
Bacteria/ultrastructure , Bivalvia/microbiology , Magnetosomes/ultrastructure , Symbiosis , Animals , Bacteria/chemistry , Bacteria/classification , Bacteria/isolation & purification , Bivalvia/ultrastructure , Gammaproteobacteria/classification , Gammaproteobacteria/isolation & purification , Gills/microbiology , Gills/ultrastructure , Magnetosomes/chemistry
5.
PLoS One ; 9(3): e92856, 2014.
Article in English | MEDLINE | ID: mdl-24658402

ABSTRACT

Within the marine bivalve family Thyasiridae, some species have bacterial chemosymbionts associated with gill epithelial cells while other species are asymbiotic. Although the abundance of symbionts in a particular thyasirid species may vary, the structure of their gills (i.e., their frontal-abfrontal thickening) does not. We examined gill structure in a species tentatively identified as Thyasira gouldi from a Northwest Atlantic fjord (Bonne Bay, Newfoundland) and found remarkable differences among specimens. Some individuals had thickened gill filaments with abundant symbionts, while others had thin filaments and lacked symbionts. We could differentiate symbiotic and asymbiotic specimens based on the size and outline of their shell as well as 18S rRNA, 28S rRNA and CO1 sequences. The wide morphological, genetic and symbiosis-related disparity described herein suggests that chemosymbiosis may influence host divergence, and that Thyasira gouldi forms a cryptic species complex.


Subject(s)
Bivalvia/classification , Symbiosis , Animals , Bivalvia/anatomy & histology , Bivalvia/genetics , Canada , Cluster Analysis , Geography , Gills/anatomy & histology , Gills/ultrastructure , Molecular Sequence Data , Polymorphism, Genetic , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...