Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
FASEB J ; 33(2): 2171-2186, 2019 02.
Article in English | MEDLINE | ID: mdl-30252532

ABSTRACT

Dysregulated neutrophil extravasation contributes to the pathogenesis of many inflammatory disorders. Pericytes (PCs) have been implicated in the regulation of neutrophil transmigration, and previous work demonstrates that endothelial cell (EC)-derived signals reduce PC barrier function; however, the signaling mechanisms are unknown. Here, we demonstrate a novel role for EC-derived macrophage migration inhibitory factor (MIF) in inhibiting PC contractility and facilitating neutrophil transmigration. With the use of micro-ELISAs, RNA sequencing, quantitative PCR, and flow cytometry, we found that ECs secrete MIF, and PCs upregulate CD74 in response to TNF-α. We demonstrate that EC-derived MIF decreases PC contractility on 2-dimensional silicone substrates via reduction of phosphorylated myosin light chain. With the use of an in vitro microvascular model of the human EC-PC barrier, we demonstrate that MIF decreases the PC barrier to human neutrophil transmigration by increasing intercellular PC gap formation. For the first time, an EC-specific MIF knockout mouse was used to investigate the effects of selective deletion of EC MIF. In a model of acute lung injury, selective deletion of EC MIF decreases neutrophil infiltration to the bronchoalveolar lavage and tissue and simultaneously decreases PC relaxation by increasing myosin light-chain phosphorylation. We conclude that paracrine signals from EC via MIF decrease PC contraction and enhance PC-regulated neutrophil transmigration.-Pellowe, A. S., Sauler, M., Hou, Y., Merola, J., Liu, R., Calderon, B., Lauridsen, H. M., Harris, M. R., Leng, L., Zhang, Y., Tilstam, P. V., Pober, J. S., Bucala, R., Lee, P. J., Gonzalez, A. L. Endothelial cell-secreted MIF reduces pericyte contractility and enhances neutrophil extravasation.


Subject(s)
Endothelium, Vascular/metabolism , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Neutrophils/cytology , Pericytes/cytology , Animals , Bronchoalveolar Lavage Fluid , Cells, Cultured , Endothelium, Vascular/cytology , Enzyme-Linked Immunosorbent Assay , Humans , Intramolecular Oxidoreductases/genetics , Macrophage Migration-Inhibitory Factors/genetics , Mice , Mice, Knockout
2.
Am J Pathol ; 187(8): 1893-1906, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28609645

ABSTRACT

Sweet syndrome (SS) is a prototypical neutrophilic dermatosis, a class of inflammatory diseases marked by elevated levels of tumor necrosis factor (TNF)-α and IL-17A, pathologic neutrophil recruitment, and microvascular remodeling. Histologic analyses of four matrix proteins-collagen I and IV, laminin, and fibronectin-in skin biopsies of patients with SS reveal that the basement membrane of dermal postcapillary venules undergoes changes in structure and composition. Increased neutrophil recruitment in vivo was associated with increases in collagen IV, decreases in laminin, and varied changes in fibronectin. In vitro studies using TNF-α and IL-17A were conducted to dissect basement membrane remodeling. Prolonged dual activation of cultured human pericytes with TNF-α and IL-17A augmented collagen IV production, similar to in vivo remodeling. Co-activation of pericytes with TNF-α and IL-17A also elevated fibronectin levels with little direct effect on laminin. However, the expression of fibronectin- and laminin-specific matrix metalloproteinases (MMPs), particularly MMP-3, was significantly up-regulated. Interactions between pericytes and neutrophils in culture yielded even higher levels of active MMPs, facilitating fibronectin and laminin degradation, and likely contributing to the varied levels of detectable fibronectin and the decreases in laminin observed in vivo. These data indicate that pericyte-neutrophil interactions play a role in mediating microvascular changes in SS and suggest that targeting MMP-3 may be effective in protecting vascular wall integrity.


Subject(s)
Basement Membrane/drug effects , Interleukin-17/pharmacology , Neutrophils/metabolism , Pericytes/drug effects , Sweet Syndrome/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Aged , Basement Membrane/metabolism , Basement Membrane/pathology , Cells, Cultured , Collagen Type IV/metabolism , Female , Fibronectins/metabolism , Humans , Laminin/metabolism , Male , Matrix Metalloproteinase 3/metabolism , Middle Aged , Neutrophils/pathology , Pericytes/metabolism , Pericytes/pathology , Sweet Syndrome/pathology
3.
PLoS One ; 12(2): e0171386, 2017.
Article in English | MEDLINE | ID: mdl-28234918

ABSTRACT

The vascular basement membrane-a thin, elastic layer of extracellular matrix separating and encasing vascular cells-provides biological and mechanical cues to endothelial cells, pericytes, and migrating leukocytes. In contrast, experimental scaffolds typically used to replicate basement membranes are stiff and bio-inert. Here, we present thin, porated polyethylene glycol hydrogels to replicate human vascular basement membranes. Like commercial transwells, our hydrogels are approximately 10µm thick, but like basement membranes, the hydrogels presented here are elastic (E: 50-80kPa) and contain a dense network of small pores. Moreover, the inclusion of bioactive domains introduces receptor-mediated biochemical signaling. We compare elastic hydrogels to common culture substrates (E: >2GPa) for human endothelial cell and pericyte monolayers and bilayers to replicate postcapillary venules in vitro. Our data demonstrate that substrate elasticity facilitates differences in vascular phenotype, supporting expression of vascular markers that are increasingly replicative of venules. Endothelial cells differentially express vascular markers, like EphB4, and leukocyte adhesion molecules, such as ICAM-1, with decreased mechanical stiffness. With porated PEG hydrogels we demonstrate the ability to evaluate and observe leukocyte recruitment across endothelial cell and pericyte monolayers and bilayers, reporting that basement membrane scaffolds can significantly alter the rate of vascular migration in experimental systems. Overall, this study demonstrates the creation and utility of a new and accessible method to recapture the mechanical and biological complexity of human basement membranes in vitro.


Subject(s)
Basement Membrane/chemistry , Endothelial Cells/cytology , Neutrophils/cytology , Pericytes/cytology , Tissue Engineering/methods , Basement Membrane/metabolism , Basement Membrane/ultrastructure , Biomarkers/metabolism , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Cell Movement , Elastic Modulus , Elasticity , Endothelial Cells/metabolism , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Gene Expression , Humans , Hydrogels/chemistry , Hydrogels/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Neutrophils/metabolism , Pericytes/metabolism , Polyethylene Glycols/chemistry , Porosity , Primary Cell Culture , Receptor, EphB4/genetics , Receptor, EphB4/metabolism , Signal Transduction
4.
J Vis Exp ; (130)2017 12 26.
Article in English | MEDLINE | ID: mdl-29364202

ABSTRACT

The basement membrane is a critical component of cellular bilayers that can vary in stiffness, composition, architecture, and porosity. In vitro studies of endothelial-epithelial bilayers have traditionally relied on permeable support models that enable bilayer culture, but permeable supports are limited in their ability to replicate the diversity of human basement membranes. In contrast, hydrogel models that require chemical synthesis are highly tunable and allow for modifications of both the material stiffness and the biochemical composition via incorporation of biomimetic peptides or proteins. However, traditional hydrogel models are limited in functionality because they lack pores for cell-cell contacts and functional in vitro migration studies. Additionally, due to the thickness of traditional hydrogels, incorporation of pores that span the entire thickness of hydrogels has been challenging. In the present study, we use poly-(ethylene-glycol) (PEG) hydrogels and a novel zinc oxide templating method to address the previous shortcomings of biomimetic hydrogels. As a result, we present an ultrathin, basement membrane-like hydrogel that permits the culture of confluent cellular bilayers on a customizable scaffold with variable pore architectures, mechanical properties, and biochemical composition.


Subject(s)
Basement Membrane/metabolism , Biomimetic Materials/chemistry , Biomimetics/methods , Cell Culture Techniques/methods , Hydrogels/chemistry , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Polyethylene Glycols/chemistry
5.
J Immunol ; 197(6): 2400-8, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27534549

ABSTRACT

A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multistep process that involves sequential cell-cell interactions of circulating leukocytes with IL-1- or TNF-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a proinflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, although neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA sequencing analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and they also stimulate neutrophil production of proinflammatory molecules, including TNF, IL-1α, IL-1ß, and IL-8. Furthermore, IL-17-activated PCs, but not ECs, can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondrial outer membrane permeabilization and caspase-9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by conditioned media from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space.


Subject(s)
Endothelium, Vascular/physiology , Interleukin-17/immunology , Neutrophils/immunology , Pericytes/physiology , Receptors, Interleukin-17/immunology , Caspase 9/metabolism , Cells, Cultured , Culture Media , Cytokines/biosynthesis , Cytokines/immunology , Endothelium, Vascular/drug effects , Endothelium, Vascular/immunology , Granulocyte Colony-Stimulating Factor/biosynthesis , Granulocyte Colony-Stimulating Factor/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Interleukin-17/genetics , Interleukin-17/pharmacology , Neutrophil Infiltration , Neutrophils/physiology , Pericytes/drug effects , Pericytes/immunology , Receptors, Interleukin-17/physiology , Sequence Analysis, RNA , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/pharmacology , Venules/cytology , Venules/immunology
6.
Elife ; 42015 Feb 02.
Article in English | MEDLINE | ID: mdl-25643397

ABSTRACT

Vascular remodeling under conditions of growth or exercise, or during recovery from arterial restriction or blockage is essential for health, but mechanisms are poorly understood. It has been proposed that endothelial cells have a preferred level of fluid shear stress, or 'set point', that determines remodeling. We show that human umbilical vein endothelial cells respond optimally within a range of fluid shear stress that approximate physiological shear. Lymphatic endothelial cells, which experience much lower flow in vivo, show similar effects but at lower value of shear stress. VEGFR3 levels, a component of a junctional mechanosensory complex, mediate these differences. Experiments in mice and zebrafish demonstrate that changing levels of VEGFR3/Flt4 modulates aortic lumen diameter consistent with flow-dependent remodeling. These data provide direct evidence for a fluid shear stress set point, identify a mechanism for varying the set point, and demonstrate its relevance to vessel remodeling in vivo.


Subject(s)
Stress, Physiological , Umbilical Veins/physiology , Vascular Endothelial Growth Factor Receptor-3/physiology , Vascular Remodeling , Animals , Endothelium, Vascular/physiology , Human Umbilical Vein Endothelial Cells , Humans , Mice , Zebrafish
7.
FASEB J ; 28(3): 1166-80, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24297702

ABSTRACT

Neutrophil extravasation occurs across postcapillary venules, structures composed of endothelial cells (ECs), pericytes (PCs), and basement membrane (BM). We constructed composite models of the human postcapillary venule, combining ECs with PCs or PC-deposited BM, to better study this process. Quiescent and tumor necrosis factor α (TNF-α)-activated composites demonstrated in situ-like expression of cadherins, E-selectin, intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), platelet-endothelial cell adhesion molecule 1 (PECAM-1), CD99, and interleukin 8 (IL-8). After TNF-α activation, the ECs supported greater neutrophil adhesion (66.1 vs. 23.7% of input cells) and transmigration (35.1 vs. 7.20% of input cells) than did the PCs, but the composites behaved comparably (no significant difference) to ECs in both assays. TNF-α-activated EC-conditioned medium (CM) increased transmigration across the PCs, whereas TNF-α-activated PC-CM decreased transmigration across the ECs, and culturing on PC-derived BM decreased both adhesion to and transmigration across the ECs. Anti-very late antigen 4 (VLA-4; on neutrophils) inhibited adhesion to TNF-α-activated composites, but not to ECs alone. Anti-CD99 (expressed on all 3 cell types) inhibited transmigration across the composites (14.5% of control) more than across the ECs (39.0% of control), and venular shear stress reduced transmigration across the ECs (17.3% of static) more than across the composites (36.7% of static). These results provide proof of concept that our composite human EC/PC/BM venular construct can reveal new interactions in the inflammatory cascade.


Subject(s)
Leukocytes/cytology , Models, Biological , Venules/anatomy & histology , Cell Adhesion , Cell Movement , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Humans , Microscopy, Electron, Scanning , Venules/cytology
8.
PLoS One ; 8(3): e60025, 2013.
Article in English | MEDLINE | ID: mdl-23555870

ABSTRACT

During acute inflammation, neutrophil recruitment into extravascular tissue requires neutrophil tethering and rolling on cytokine-activated endothelial cells (ECs), tight adhesion, crawling towards EC junctions and transendothelial migration (TEM). Following TEM, neutrophils must still traverse the subendothelial basement membrane and network of pericytes (PCs). Until recently, the contribution of the PC layer to neutrophil recruitment was largely ignored. Here we analyze human neutrophil interactions with interleukin (IL)-1ß-activated human EC monolayers, PC monolayers and EC/PC bilayers in vitro. Compared to EC, PC support much lower levels of neutrophil binding (54.6% vs. 7.1%, respectively) and transmigration (63.7 vs. 8.8%, respectively) despite comparable levels of IL-8 (CXCL8) synthesis and display. Remarkably, EC/PC bilayers support intermediate levels of transmigration (37.7%). Neutrophil adhesion to both cell types is Mac-1-dependent and while ICAM-1 transduction of PCs increases neutrophil adhesion to (41.4%), it does not increase transmigration through PC monolayers. TEM, which increases neutrophil Mac-1 surface expression, concomitantly increases the ability of neutrophils to traverse PCs (19.2%). These data indicate that contributions from both PCs and ECs must be considered in evaluation of microvasculature function in acute inflammation.


Subject(s)
Neutrophils/cytology , Neutrophils/metabolism , Pericytes/cytology , Transendothelial and Transepithelial Migration/drug effects , CD18 Antigens/metabolism , CD18 Antigens/pharmacology , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Polarity/drug effects , Cells, Cultured , Humans , Intercellular Adhesion Molecule-1/metabolism , Interleukin-8/metabolism , Neutrophils/drug effects
9.
Toxicol Sci ; 121(1): 146-59, 2011 May.
Article in English | MEDLINE | ID: mdl-21346248

ABSTRACT

Axonal morphology is a critical determinant of neuronal connectivity, and perturbation of the rate or extent of axonal growth during development has been linked to neurobehavioral deficits in animal models and humans. We previously demonstrated that the organophosphorus pesticide (OP) chlorpyrifos (CPF) inhibits axonal growth in cultured neurons. In this study, we used a zebrafish model to determine whether CPF, its oxon metabolite (CPFO), or the excreted metabolite trichloro-2-pyridinol (TCPy) alter spatiotemporal patterns of axonal growth in vivo. Static waterborne exposure to CPFO, but not CPF or TCPy, at concentrations ≥ 0.03 µM from 24- to 72-h post fertilization significantly inhibited acetylcholinesterase, and high-performance liquid chromatography detected significantly more TCPy in zebrafish exposed to 0.1 µM CPFO versus 1.0 µM CPF. These data suggest that zebrafish lack the metabolic enzymes to activate CPF during these early developmental stages. Consistent with this, CPFO, but not CPF, significantly inhibited axonal growth of sensory neurons, primary motoneurons, and secondary motoneurons at concentrations ≥ 0.1 µM. Secondary motoneurons were the most sensitive to axonal growth inhibition by CPFO, which was observed at concentrations that did not cause mortality, gross developmental defects, or aberrant somatic muscle differentiation. CPFO effects on axonal growth correlated with adverse effects on touch-induced swimming behavior, suggesting the functional relevance of these structural changes. These data suggest that altered patterns of neuronal connectivity contribute to the developmental neurotoxicity of CPF and demonstrate the relevance of zebrafish as a model for studying OP developmental neurotoxicity.


Subject(s)
Axons , Motor Activity/drug effects , Zebrafish/growth & development , Animals , Chlorpyrifos/analogs & derivatives , Chromatography, High Pressure Liquid , Immunohistochemistry , Swimming , Zebrafish/physiology
10.
J Neurochem ; 108(4): 1057-71, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19209406

ABSTRACT

Clinical and experimental evidence suggest that statins decrease sympathetic activity, but whether peripheral mechanisms involving direct actions on post-ganglionic sympathetic neurons contribute to this effect is not known. Because tonic activity of these neurons is directly correlated with the size of their dendritic arbor, we tested the hypothesis that statins decrease dendritic arborization in sympathetic neurons. Oral administration of atorvastatin (20 mg/kg/day for 7 days) significantly reduced dendritic arborization in vivo in sympathetic ganglia of adult male rats. In cultured sympathetic neurons, statins caused dendrite retraction and reversibly blocked bone morphogenetic protein-induced dendritic growth without altering cell survival or axonal growth. Supplementation with mevalonate or isoprenoids, but not cholesterol, attenuated the inhibitory effects of statins on dendritic growth, whereas specific inhibition of isoprenoid synthesis mimicked these statin effects. Statins blocked RhoA translocation to the membrane, an event that requires isoprenylation, and constitutively active RhoA reversed statin effects on dendrites. These observations that statins decrease dendritic arborization in sympathetic neurons by blocking RhoA activation suggest a novel mechanism by which statins decrease sympathetic activity and protect against cardiovascular and cerebrovascular disease.


Subject(s)
Cell Differentiation/drug effects , Dendrites/drug effects , Ganglia, Sympathetic/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , rhoA GTP-Binding Protein/antagonists & inhibitors , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/pharmacology , Cell Differentiation/physiology , Cell Shape/drug effects , Cells, Cultured , Dendrites/metabolism , Dendrites/ultrastructure , Enzyme Activation/drug effects , Enzyme Activation/physiology , Ganglia, Sympathetic/cytology , Ganglia, Sympathetic/metabolism , Heart Rate/drug effects , Heart Rate/physiology , Male , Mevalonic Acid/metabolism , Mevalonic Acid/pharmacology , Prenylation/drug effects , Protein Transport/drug effects , Protein Transport/physiology , Rats , Rats, Sprague-Dawley , Terpenes/antagonists & inhibitors , Terpenes/metabolism , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...