Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8309, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097543

ABSTRACT

Metabolism, the biological processing of energy and materials, scales predictably with temperature and body size. Temperature effects on metabolism are normally studied via acute exposures, which overlooks the capacity for organisms to moderate their metabolism following chronic exposure to warming. Here, we conduct respirometry assays in situ and after transplanting salmonid fish among different streams to disentangle the effects of chronic and acute thermal exposure. We find a clear temperature dependence of metabolism for the transplants, but not the in-situ assays, indicating that chronic exposure to warming can attenuate salmonid thermal sensitivity. A bioenergetic model accurately captures the presence of fish in warmer streams when accounting for chronic exposure, whereas it incorrectly predicts their local extinction with warming when incorporating the acute temperature dependence of metabolism. This highlights the need to incorporate the potential for thermal acclimation or adaptation when forecasting the consequences of global warming on ecosystems.


Subject(s)
Salmonidae , Animals , Temperature , Ecosystem , Global Warming , Energy Metabolism , Acclimatization
2.
J Fish Biol ; 102(3): 721-726, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36602275

ABSTRACT

In spring 2022, pink salmon Oncorhynchus gorbuscha smolts were recorded in the UK. Fish were caught in the Rivers Thurso and Oykel in Scotland between 13 and 17 March. To the authors' knowledge, this is the first observation of O. gorbuscha smolts in Europe outside the Scandinavian and Kola peninsulas, including other tributaries of the White and Barents Seas. It also provides evidence of successful spawning in 2021 and completion of the freshwater phase of the life cycle, and indicates the possibility for potential establishment of an O. gorbuscha population in Great Britain.


Subject(s)
Oncorhynchus , Salmon , Animals , Life Cycle Stages , Scotland , Europe , United Kingdom
3.
Ecol Appl ; 32(2): e2492, 2022 03.
Article in English | MEDLINE | ID: mdl-34773666

ABSTRACT

Aquatic habitats are severely threatened by human activities. For anadromous species, managing freshwater habitats to maximize production of more, larger juveniles could improve resilience to threats in marine habitats and enhance population viability. In some juvenile salmonid habitats, complexity created by large substrates provides resources and reduces competitive interactions, thereby promoting juvenile production. In lowland rivers, which lack large substrates, aquatic plants might provide similar complexity and enhance fish productivity. To test the influence of aquatic plants on juvenile Atlantic salmon and sympatric brown trout in a lowland river, we directly manipulated the cover of the dominant macrophyte, Ranunculus, in nine sites during summer and autumn for two years. We quantified the abundance, site retention and growth of salmon and trout under high, medium or low Ranunculus cover. To investigate the effects of Ranunculus cover on feeding opportunities and interspecific competition, we quantified available prey biomass and body size, fish diet composition and compared dietary niche overlap. Experimentally increased Ranunculus cover supported higher salmon abundance in summer and autumn, and higher site retention and growth of salmon in summer. Trout abundance and growth were not influenced by Ranunculus cover, but trout site retention doubled in high, relative to low, cover sites. Despite the weak effects of Ranunculus cover on prey availability, salmon and trout inhabiting high cover sites consumed larger prey and a higher biomass of prey. Furthermore, dietary niche overlap was lower in high, relative to low, cover sites, suggesting that abundant Ranunculus reduced interspecific competition. This field experiment shows that high Ranunculus cover can support more and better growing juvenile salmon, and facilitate foraging and co-existence of sympatric salmonid species. Maintaining or enhancing natural macrophyte cover can be achieved through sympathetic in-river and riparian vegetation management and mitigating pressures on them, such as sediment inputs and low flows, or through planting. Further research should test whether macrophyte cover benefits propagate to subsequent life stages, particularly juvenile overwintering associated with high mortality. This knowledge, in combination with our findings, would further clarify whether beneficial juvenile habitat can improve the viability of at-risk salmonid populations. Overall, our findings suggest that the aims of river restoration might be achieved through promotion of in-stream aquatic vegetation.


Subject(s)
Salmo salar , Animals , Fresh Water , Rivers , Seasons , Trout
4.
J Fish Biol ; 99(3): 1125-1129, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33881168

ABSTRACT

Previous work suggests that juvenile salmon recruitment in rain-fed rivers is negatively influenced by warm and wet winters and cool springs. We tested whether this is generally applicable to a southern England chalk stream characterized by comparatively stable discharges and temperatures. We found that warm spawning and cool emergence temperatures negatively influenced juvenile recruitment between 2015 and 2020. Together these findings suggest an ability to predict juvenile productivity from water temperature records around spawning and fry emergence, thereby allowing time for management interventions in years of unfavourable temperatures.


Subject(s)
Rivers , Salmo salar , Animals , Calcium Carbonate , Seasons , Temperature
5.
Biol Lett ; 17(3): 20200798, 2021 03.
Article in English | MEDLINE | ID: mdl-33726566

ABSTRACT

The relationship between body mass (M) and size class abundance (N) depicts patterns of community structure and energy flow through food webs. While the general assumption is that M and N scale linearly (on log-log axes), nonlinearity is regularly observed in natural systems, and is theorized to be driven by nonlinear scaling of trophic level (TL) with M resulting in the rapid transfer of energy to consumers in certain size classes. We tested this hypothesis with data from 31 stream food webs. We predicted that allochthonous subsidies higher in the web results in nonlinear M-TL relationships and systematic abundance peaks in macroinvertebrate and fish size classes (latter containing salmonids), that exploit terrestrial plant material and terrestrial invertebrates, respectively. Indeed, both M-N and M-TL significantly deviated from linear relationships and the observed curvature in M-TL scaling was inversely related to that observed in M-N relationships. Systemic peaks in M-N, and troughs in M-TL occurred in size classes dominated by generalist invertebrates, and brown trout. Our study reveals how allochthonous resources entering high in the web systematically shape community size structure and demonstrates the relevance of a generalized metabolic scaling model for understanding patterns of energy transfer in energetically 'open' food webs.


Subject(s)
Food Chain , Invertebrates , Animals , Body Size , Fishes , Rivers
6.
Ecol Lett ; 21(12): 1771-1780, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30257275

ABSTRACT

Body mass-abundance (M-N) allometries provide a key measure of community structure, and deviations from scaling predictions could reveal how cross-ecosystem subsidies alter food webs. For 31 streams across the UK, we tested the hypothesis that linear log-log M-N scaling is shallower than that predicted by allometric scaling theory when top predators have access to allochthonous prey. These streams all contained a common and widespread top predator (brown trout) that regularly feeds on terrestrial prey and, as hypothesised, deviations from predicted scaling increased with its dominance of the fish assemblage. Our study identifies a key beneficiary of cross-ecosystem subsidies at the top of stream food webs and elucidates how these inputs can reshape the size-structure of these 'open' systems.


Subject(s)
Food Chain , Rivers , Animals , Ecosystem , Fishes
7.
J Fish Biol ; 93(3): 477-489, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29931783

ABSTRACT

Adult return rates for wild Atlantic salmon Salmo salar smolts captured in a rotary screw trap and tagged with coded wire (CW) tags were compared with a control group, using detections from passive integrated transponder (PIT) antennae systems over 7 years in a small chalk stream in southern England, U.K. Compared with control smolts, capture and CW-tagging of experimental smolts affected detected return rates only under certain conditions, with a decreased return probability for smolts caught and tagged following mild winter river temperature anomalies and during the night. Similarly, analysis of the experimental smolts revealed that capture and CW-tagging following mild winters decreased their probability of return as adults. There were also marginal positive effects of length at PIT-tagging as parr and length at CW-tagging as smolts, on individual probability of return as adult. The results support the hypothesis that the effect of procedures involving the capture and tagging of migrating wild S. salar smolts will vary with the circumstances under which they are performed. The implications of the findings are considered in the context of ongoing investigations to derive and report marine return rates for S. salar in support of national and international stock assessments and in developing best practice.


Subject(s)
Salmo salar , Telemetry/adverse effects , Animal Migration , Animals , England , Probability , Rivers , Salmon , Seasons , Temperature
8.
J Anim Ecol ; 78(1): 253-69, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19120606

ABSTRACT

1. A fundamental goal of ecological network research is to understand how the complexity observed in nature can persist and how this affects ecosystem functioning. This is essential for us to be able to predict, and eventually mitigate, the consequences of increasing environmental perturbations such as habitat loss, climate change, and invasions of exotic species. 2. Ecological networks can be subdivided into three broad types: 'traditional' food webs, mutualistic networks and host-parasitoid networks. There is a recent trend towards cross-comparisons among network types and also to take a more mechanistic, as opposed to phenomenological, perspective. For example, analysis of network configurations, such as compartments, allows us to explore the role of co-evolution in structuring mutualistic networks and host-parasitoid networks, and of body size in food webs. 3. Research into ecological networks has recently undergone a renaissance, leading to the production of a new catalogue of evermore complete, taxonomically resolved, and quantitative data. Novel topological patterns have been unearthed and it is increasingly evident that it is the distribution of interaction strengths and the configuration of complexity, rather than just its magnitude, that governs network stability and structure. 4. Another significant advance is the growing recognition of the importance of individual traits and behaviour: interactions, after all, occur between individuals. The new generation of high-quality networks is now enabling us to move away from describing networks based on species-averaged data and to start exploring patterns based on individuals. Such refinements will enable us to address more general ecological questions relating to foraging theory and the recent metabolic theory of ecology. 5. We conclude by suggesting a number of 'dead ends' and 'fruitful avenues' for future research into ecological networks.


Subject(s)
Ecology , Food Chain , Animals , Behavior, Animal/physiology , Biological Evolution , Ecology/methods , Ecology/trends
9.
Environ Toxicol ; 20(5): 513-21, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16161113

ABSTRACT

Outdoor experimental channels were used to study the behavioral changes of stream macroinvertebrates exposed to a pulse of the pyrethroid insecticide lambda-cyhalothrin. The primary end point was the number of macroinvertebrates drifting, but the mobility of macroinvertebrates caught in the drift also was assessed. A specified number of two insect species, Baetis rhodani and Leuctra fusca/digitata, and of the amphipod Gammarus pulex were introduced into small replicated subsections of the experimental channels. Macroinvertebrates were allowed to acclimatize for 26 h prior to a 60-min pulsed exposure to lambda-cyhalothrin. Measurement was initiated 2 h before pesticide application and continued for the following 24 h. Pulse concentrations of lambda-cyhalothrin of 0.001, 0.01, 0.1, and 1.0 microg L(-1) were applied, and each experiment was replicated 8 times. All three species responded to the pesticide pulse with catastrophic drift. The 0.001 microg L(-1) treatment caused a significant increase in the drift of Gammarus, whereas the drift response threshold was 0.01 microg L(-1) for the two insect species. Drift response onset followed the applied pulse concentration, with the highest concentrations resulting in more individuals of all species entering drift at an early stage. The majority of individuals caught in drift samples during low concentrations showed no change in mobility. At the two highest concentrations, however, both Baetis and Leuctra were in the process of being immobilized, with Leuctra the more sensitive of the two. In contrast, only a few of the Gammarus individuals caught showed changes in mobility after the high-concentration treatments. The present study shows that lambda-cyhalothrin is a potential hazard for macroinvertebrate populations in headwater streams. The clear species-specific responses indicate that sublethal doses have the potential to change the macroinvertebrate community structure.


Subject(s)
Insecticides/toxicity , Invertebrates/drug effects , Nitriles/toxicity , Pyrethrins/toxicity , Amphipoda/drug effects , Animals , Dose-Response Relationship, Drug , Ecosystem , Fresh Water , Insecta/drug effects , Invertebrates/physiology , Population Dynamics , Species Specificity , Time Factors , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...