Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 55(7): 5580-5593, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28980210

ABSTRACT

Although photobiomodulation therapy (PBM) has been applied clinically for the treatment of pain and inflammation, wound healing, sports and soft tissue injuries, as well as to repair injured spinal cords and peripheral nerves, it remains unclear which molecular substrates (receptor) are implicated in the cellular mechanisms of PBM. Here, we reported that PBM (660 nm, 30 mW, 0.06 cm2, 50 J/cm2, plantar irradiation) significantly inhibited carrageenan-induced paw oedema, but not noxious thermal response, through positive modulation to both CB1 and CB2 cannabinoid receptors. The use of CB1 antagonist AM281 or CB2 antagonist AM630 significantly reversed the anti-inflammatory effect of PBM. Analysis of signalling pathway downstream of cannabinoid receptors activation reveals that anti-inflammatory effects of PBM depend, in great extent, on its ability to activate ATP-dependent K+ channels and p38 mitogen-activated protein kinase. Moreover, PBM therapy significantly reduced the levels of pro-inflammatory cytokine IL-6 in both paw and spinal cord, and restored the reduction of the level of anti-inflammatory cytokine IL-10 in spinal cord after carrageenan injection. Unlike the potent cannabinoid receptor agonist (WIN 55212-2), PBM did not exert any CNS-mediated effects in the tetrad assay. Finally, PBM does not reduce inflammation and noxious thermal response induced by LPS and zymosan, a TLR4 and TLR2/dectin-1 ligand, respectively. Thus, cannabinoid receptors and, possibly, the endocannabinoid system, represent an important site of action of PBM that opens the possibility of complementary and nonpsychotropic therapeutic interventions in clinical practice. Graphical Abstract ᅟ.


Subject(s)
Inflammation/radiotherapy , KATP Channels/metabolism , Low-Level Light Therapy , MAP Kinase Signaling System , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Carrageenan , Cytokines/metabolism , Edema/complications , Edema/pathology , Edema/radiotherapy , Hyperalgesia/complications , Hyperalgesia/pathology , Immunomodulation , Inflammation/complications , Inflammation/pathology , Lectins, C-Type/metabolism , Male , Mice , Models, Biological , Spinal Cord/pathology , Toll-Like Receptors/metabolism
2.
Front Pharmacol ; 8: 584, 2017.
Article in English | MEDLINE | ID: mdl-28928655

ABSTRACT

Simvastatin is a lipid-lowering agent that blocks the production of cholesterol through inhibition of 3-hydroxy-methyl-glutaryl coenzyme A (HMG-CoA) reductase. In addition, recent evidence has suggested its anti-inflammatory and antinociceptive actions during inflammatory and pain disorders. Herein, we investigated the effects of simvastatin in an animal model of complex regional pain syndrome-type I, and its underlying mechanisms. Chronic post-ischemia pain (CPIP) was induced by ischemia and reperfusion (IR) injury of the left hind paw. Our findings showed that simvastatin inhibited mechanical hyperalgesia induced by CPIP model in single and repeated treatment schedules, respectively; however simvastatin did not alter inflammatory signs during CPIP model. The mechanisms underlying those actions are related to modulation of transient receptor potential (TRP) channels, especially TRMP8. Moreover, simvastatin oral treatment was able to reduce the nociception induced by acidified saline [an acid-sensing ion channels (ASICs) activator] and bradykinin (BK) stimulus, but not by TRPA1, TRPV1 or prostaglandin-E2 (PGE2). Relevantly, the antinociceptive effects of simvastatin did not seem to be associated with modulation of the descending pain circuits, especially noradrenergic, serotoninergic and dopaminergic systems. These results indicate that simvastatin consistently inhibits mechanical hyperalgesia during neuropathic and inflammatory disorders, possibly by modulating the ascending pain signaling (TRPM8/ASIC/BK pathways expressed in the primary sensory neuron). Thus, simvastatin open-up new standpoint in the development of innovative analgesic drugs for treatment of persistent pain, including CRPS-I.

SELECTION OF CITATIONS
SEARCH DETAIL
...