Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Virology ; 379(1): 10-9, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18657283

ABSTRACT

Icosahedral dsDNA viruses isolated from hot springs and proposed to belong to the Tectiviridae family infect the gram-negative thermophilic Thermus thermophilus bacterium. Seven such viruses were obtained from the Promega Corporation collection. The structural protein patterns of three of these viruses, growing to a high titer, appeared very similar but not identical. The most stable virus, P23-77, was chosen for more detailed studies. Analysis of highly purified P23-77 by thin layer chromatography for neutral lipids showed lipid association with the virion. Cryo-EM based three-dimensional image reconstruction of P23-77 to 1.4 nm resolution revealed an icosahedrally-ordered protein coat, with spikes on the vertices, and an internal membrane. The capsid architecture of P23-77 is most similar to that of the archaeal virus SH1. These findings further complicate the grouping of icosahedrally-symmetric viruses containing an inner membrane. We propose a single superfamily or order with members in several viral families.


Subject(s)
Bacteriophages/chemistry , Bacteriophages/ultrastructure , Tectiviridae/chemistry , Tectiviridae/ultrastructure , Thermus thermophilus/virology , Bacteriophages/classification , Bacteriophages/isolation & purification , Cryoelectron Microscopy , Hot Springs/virology , Lipids/analysis , Microscopy, Electron, Transmission , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary , Tectiviridae/classification , Tectiviridae/isolation & purification , Viral Plaque Assay , Viral Structural Proteins/isolation & purification , Virion/chemistry , Virion/ultrastructure
2.
Biophys J ; 93(2): 620-8, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17468163

ABSTRACT

Chlorosomes, the main antenna complexes of green photosynthetic bacteria, were isolated from null mutants of Chlorobium tepidum, each of which lacked one enzyme involved in the biosynthesis of carotenoids. The effects of the altered carotenoid composition on the structure of the chlorosomes were studied by means of x-ray scattering and electron cryomicroscopy. The chlorosomes from each mutant strain exhibited a lamellar arrangement of the bacteriochlorophyll c aggregates, which are the major constituents of the chlorosome interior. However, the carotenoid content and composition had a pronounced effect on chlorosome biogenesis and structure. The results indicate that carotenoids with a sufficiently long conjugated system are important for the biogenesis of the chlorosome baseplate. Defects in the baseplate structure affected the shape of the chlorosomes and were correlated with differences in the arrangement of lamellae and spacing between the lamellar planes of bacteriochlorophyll aggregates. In addition, comparisons among the various mutants enabled refinement of the assignments of the x-ray scattering peaks. While the main scattering peaks come from the lamellar structure of bacteriochlorophyll c aggregates, some minor peaks may originate from the paracrystalline arrangement of CsmA in the baseplate.


Subject(s)
Bacterial Proteins/chemistry , Carotenoids/biosynthesis , Chlorobium/metabolism , Chlorobium/ultrastructure , Light-Harvesting Protein Complexes/chemistry , Bacterial Proteins/genetics , Biophysical Phenomena , Biophysics , Chlorobium/genetics , Cryoelectron Microscopy , Genes, Bacterial , Light-Harvesting Protein Complexes/genetics , Mutation , X-Ray Diffraction
3.
Biophys J ; 87(2): 1165-72, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15298919

ABSTRACT

Chlorosomes of green photosynthetic bacteria constitute the most efficient light harvesting complexes found in nature. In addition, the chlorosome is the only known photosynthetic system where the majority of pigments (BChl) is not organized in pigment-protein complexes but instead is assembled into aggregates. Because of the unusual organization, the chlorosome structure has not been resolved and only models, in which BChl pigments were organized into large rods, were proposed on the basis of freeze-fracture electron microscopy and spectroscopic constraints. We have obtained the first high-resolution images of chlorosomes from the green sulfur bacterium Chlorobium tepidum by cryoelectron microscopy. Cryoelectron microscopy images revealed dense striations approximately 20 A apart. X-ray scattering from chlorosomes exhibited a feature with the same approximately 20 A spacing. No evidence for the rod models was obtained. The observed spacing and tilt-series cryoelectron microscopy projections are compatible with a lamellar model, in which BChl molecules aggregate into semicrystalline lateral arrays. The diffraction data further indicate that arrays are built from BChl dimers. The arrays form undulating lamellae, which, in turn, are held together by interdigitated esterifying alcohol tails, carotenoids, and lipids. The lamellar model is consistent with earlier spectroscopic data and provides insight into chlorosome self-assembly.


Subject(s)
Bacterial Chromatophores/ultrastructure , Chlorobium/ultrastructure , Light-Harvesting Protein Complexes/ultrastructure , Pigments, Biological/chemistry , Cryoelectron Microscopy , Molecular Conformation , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...