Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cardiovasc Pharmacol Ther ; 17(1): 117-25, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21593444

ABSTRACT

Iron-induced cardiovascular disease is the leading cause of death in iron-overloaded patients. Deferasirox is a novel tridentate oral chelator that exhibits a half-life suitable for once-daily dosing; however, little is known regarding the effectiveness of this agent in preventing iron-induced cardiovascular disease. Adult male Mongolian gerbils were randomly divided into 3 groups: control, iron overload, and iron overload followed by deferasirox treatment. Iron-overloaded animals received iron dextran 100 mg/kg intraperitoneally (ip)/5 days for 10 weeks, while deferasirox was given 100 mg/kg per d orally (po) for 9 months post iron loading. Cardiac and aortic iron levels were determined by inductively coupled plasma atomic emission spectrometry. Gerbil electro- and echocardiograms were obtained in anesthetized animals at regular intervals. Compared to control animals, iron concentration was 3.3- and 2.4-fold higher in iron-overloaded heart and aorta, respectively (P < .05). Deferasirox treatment reduced cardiac and aortic iron levels by 32% and 35%, respectively (P < .05). These results were consistent with the decrease in cellular iron deposition observed with Prussian Blue iron staining. Iron-overloaded gerbils were found to exhibit frequent arrhythmias including premature ventricular contractions, supraventricular tachycardia, and recurrent ventricular tachycardia. In addition, echocardiographic assessment demonstrated iron overload-associated increase in left ventricular dimensions including left ventricular posterior wall dimension (LVPWd: 49%), left ventricular internal dimension (LVIDd: 26%), and left ventricular septum thickness (LVSd: 42%). These parameters were significantly reduced with deferasirox treatment (LVPWd: 23%, LVIDd: 24%, and LVSd: 27%). Iron overload was also associated with reduced ejection fraction (EF: by 30%) and fractional shortening (FS: by 23%) in comparison with controls (P < .05). With deferasirox treatment, these values were higher (EF: by 30%, FS: by 28%) compared to iron-overloaded group. These findings suggest that deferasirox may be useful for attenuating iron-induced changes in cardiac structure and function.


Subject(s)
Cardiotonic Agents/therapeutic use , Cardiovascular Diseases/prevention & control , Iron Chelating Agents/therapeutic use , Iron Overload/drug therapy , Animals , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Gerbillinae , Iron Overload/complications , Iron Overload/metabolism , Male , Treatment Outcome
2.
Cardiovasc Toxicol ; 10(2): 108-16, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20229123

ABSTRACT

It is thought that aging in rats and humans is associated with increases in iron accumulation and cell apoptosis. Here, we examine the relationship between cardiac iron levels and apoptosis in aged F344XBN rats that had been treated with an oral iron chelator (Deferasirox; 100 mg/kg body weight) on alternate days for 6 months. Compared to adult animals (6 month), cardiac iron (+72%), liver iron (+87%), ferritin light chain (+59%), divalent metal transporter-1 (+56%) and the number of TdT-mediated dUTP nick end labeling (TUNEL) positive cells (4.3 fold increase) were higher in 33-month-old animals (P < 0.05). Deferasirox treatment decreased cardiac iron levels by 37% (P < 0.05), and this was associated with decreases in the number of TUNEL-positive cells. Age-associated increases in cell death were coupled with increases in Bax to Bcl-2 ratio, and the amount of Bad, full-length caspase-3, and cleaved caspase-3. Deferasirox treatment decreased the Bax to Bcl-2 ratio by 17% (P < 0.05) and the amount of Bad, full-length caspase-3, cleaved caspase-3 (19 kDa), and cleaved caspase-3 (17 kDa) by 41, 16, 22, and 37%, respectively (P < 0.05). Taken together, these data suggest that deferasirox may be effective in diminishing age-associated iron accumulation and cardiac apoptosis in the F344XBN rat model.


Subject(s)
Aging/drug effects , Benzoates/pharmacology , Heart/drug effects , Iron Chelating Agents/pharmacology , Iron Overload/prevention & control , Iron/metabolism , Liver/drug effects , Triazoles/pharmacology , Animals , Apoptosis/drug effects , Body Weight/drug effects , Deferasirox , In Situ Nick-End Labeling , Iron/analysis , Iron Overload/metabolism , Iron Overload/pathology , Liver/chemistry , Liver/metabolism , Male , Myocardium/chemistry , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Organ Size/drug effects , Rats , Rats, Inbred F344 , Trace Elements/analysis
3.
Ann Clin Lab Sci ; 39(4): 378-85, 2009.
Article in English | MEDLINE | ID: mdl-19880766

ABSTRACT

This study tested if acetaminophen, N-methyl-D-glucamine dithiocarbamate (NMGDTC), deferoxamine, and combinations of these agents reduce excess iron content, prevent iron-induced pathology, reduce cardiac arrhythmias, and reduce mortality in iron-overloaded gerbils. Eight groups of 16 gerbils received iron dextran injections (ferric hydroxide dextran complex, 120 mg/kg, ip) or saline solution (controls) twice/wk for 8 wk. The 8 groups were treated every Monday, Wednesday, and Friday with one of the following: saline control, acetaminophen, 150 mg/kg, ip), acetaminophen (150 mg/kg, po), deferoxamine, 83 mg/kg, ip), NMGDTC (200 mg/kg, ip), or combinations of acetaminophen (75 mg/kg) with deferoxamine (42 mg/kg, each ip, separately) or acetaminophen (75 mg/kg) with NMGDTC (100 mg/kg, each ip, separately). The treatments were given 4 hr after each iron injection on days when both iron administration and treatment occurred during iron overloading (8 wk) and were continued 4 wk thereafter. Echocardiography (ECHO) was used to evaluate iron-induced cardiac changes and detect arrhythmias. Acetaminophen and NMGDTC, or combinations thereof, reduced cardiac and hepatic excess iron content as measured by inductively coupled plasma atomic emission spectrometry (ICP-AES). Acetaminophen was effective whether administered po or ip. Acetaminophen treatment had a positive inotropic effect on cardiac function. Acetaminophen-deferoxamine combination conferred equal cardioprotection as acetaminophen or deferoxamine alone, was equally able to remove hepatic iron, and was superior to either acetaminophen or deferoxamine in removing cardiac iron from iron-overloaded gerbils. Acetaminophen-NMGDTC combination was also effective in removing cardiac and hepatic iron and protecting against iron-induced cardiac damage. ECHO evaluation of iron-overloaded, untreated gerbils demonstrated a high incidence of cardiac arrhythmias, usually PVCs (10/16 = 63%), and mortality prior to completion of the experiment (4/16 = 25%). All treatments except deferoxamine, alone, reduced the incidence of cardiac arrhythmias and deaths. All treatments reduced iron-induced increases in hepatic and cardiac weights. This study demonstrates injection alternates that are equally or more effective than deferoxamine injections and shows oral acetaminophen to be effective in treatment of iron-overload and associated cardiac complications.


Subject(s)
Acetaminophen/pharmacology , Cardiotonic Agents/pharmacology , Gerbillinae/metabolism , Myocardium/pathology , Animals , Arrhythmias, Cardiac/mortality , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Body Weight/drug effects , Electrocardiography , Heart Function Tests/drug effects , Iron , Liver/drug effects , Liver/metabolism , Male , Organ Size/drug effects
4.
Am J Hematol ; 84(9): 565-70, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19650117

ABSTRACT

Iron-induced cardiovascular disease is the leading cause of death in iron-overloaded patients. Deferasirox is a novel, once daily oral iron chelator that was recently approved for the treatment of transfusional iron overload. Here, we investigate whether deferasirox is capable of removing cardiac iron and improving iron-induced pathogenesis of the heart using the iron overload gerbil model. Animals were randomly divided into three groups: control, iron overload, and iron overload + deferasirox treatment. Iron-dextran was given 100 mg/kg per 5 days i.p for 10 weeks. Deferasirox treatment was taken post iron loading and was given at 100 mg/kg/day p.o for 1 or 3 months. Cardiac iron concentration was determined by inductively coupled plasma atomic emission spectroscopy. Compared with the untreated group, deferasirox treatment for 1 and 3 months decreased cardiac iron concentration 17.1% (P = 0.159) and 23.5% (P < 0.05), respectively. These treatment-associated reductions in cardiac iron were paralleled by decreases in tissue ferritin expression of 20% and 38% at 1 and 3 months, respectively (P < 0.05). Using oxyblot analysis and hydroethidine fluorescence, we showed that deferasirox significantly reduces cardiac protein oxidation and superoxide abundance by 36 and 47.1%, respectively (P < 0.05). Iron-induced increase in oxidative stress was also associated with increased phosphorylation of ERK-, p38-, and JNK-mitogen-activated protein kinase (MAPK). Interestingly, deferasirox treatment significantly diminished the phosphorylation of all three MAPK subfamilies. These results suggest that deferasirox may confer a cardioprotective effect against iron induced injury.


Subject(s)
Benzoates/pharmacology , Iron Overload/drug therapy , Iron/analysis , Myocardium/chemistry , Oxidative Stress/drug effects , Triazoles/pharmacology , Animals , Benzoates/administration & dosage , Cardiotonic Agents , Deferasirox , Extracellular Signal-Regulated MAP Kinases/metabolism , Gerbillinae , Heart/drug effects , Iron Chelating Agents/administration & dosage , Iron Chelating Agents/pharmacology , MAP Kinase Kinase 4/metabolism , Male , Myocardium/metabolism , Phosphorylation , Triazoles/administration & dosage , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...