Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(18)2021 Apr.
Article in English | MEDLINE | ID: mdl-33910910

ABSTRACT

Permafrost carbon represents a potentially powerful amplifier of climate change, but little is known about permafrost sensitivity and associated carbon cycling during past warm intervals. We reconstruct permafrost history in western Canada during Pleistocene interglacials from 130 uranium-thorium ages on 72 speleothems, cave deposits that only accumulate with deep ground thaw. We infer that permafrost thaw extended to the high Arctic during one or more periods between ~1.5 million and 0.5 million years ago but has been limited to the sub-Arctic since 400,000 years ago. Our Canadian speleothem growth history closely parallels an analogous reconstruction from Siberia, suggesting that this shift toward more stable permafrost across the Pleistocene may have been Arctic-wide. In contrast, interglacial greenhouse gas concentrations were relatively stable throughout the Pleistocene, suggesting that either permafrost thaw did not trigger substantial carbon release to the atmosphere or it was offset by carbon uptake elsewhere on glacial-interglacial time scales.

2.
Astrobiology ; 9(9): 807-22, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19968459

ABSTRACT

In recent years, endostromatolites, which consist of finely laminated calcite columns that grow orthogonally within millimeter- to centimeter-thick fissures in limestone bedrock outcrops, have been discovered in dolomitic outcrops in the Haughton impact structure region, Devon Island, Canada. The growth mechanism of the endostromatolites is believed to be very slow and possibly intertwined with biotic and abiotic processes. Therefore, to discern how endostromatolites form in this polar desert environment, the composition of the microbial community of endostromatolites was determined by means of molecular phylogenetic analysis and compared to the microbial communities found in the surrounding soils. The microbial community present within endostromatolites can be inferred to be (given the predominant metabolic traits of related organisms) mostly aerobic and chemoheterotrophic, and belongs in large part to the phylum Actinobacteria and the subphylum Alphaproteobacteria. The identification of these bacteria suggests that the conditions within the fissure were mostly oxidizing during the growth of endostromatolite. The DNA sequences also indicate that a number of bacteria that closely resemble Rubrobacter radiotolerans are abundant in the endostromatolites as well as other Actinobacteria and Alphaproteobacteria. Some of these taxa have been associated with calcite precipitation, which suggests that the endostromatolites might in fact be microbially mediated. Bacterial communities from nearby permanently frozen soils were more diverse and harbored all the phyla found in the endostromatolites with additional taxa. This study on the microbial communities preserved in potentially microbially mediated secondary minerals in the Arctic could help in the search for evidence of life-forms near the edge of habitability on other planetary bodies.


Subject(s)
Biodiversity , Calcium Carbonate/chemistry , Ice , Actinobacteria/genetics , Arctic Regions , Bacteria/classification , Bacteria/isolation & purification , Canada , Clone Cells , Desert Climate , Exobiology , Geography , Microscopy, Electron, Scanning , Phylogeny , Proteobacteria/genetics , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...