Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256207

ABSTRACT

Up Regulation Gene seven (URG7) is the pseudogene 2 of the transporter ABCC6. The translated URG7 protein is localized with its single transmembrane α-helix in the endoplasmic reticulum (ER) membrane, orienting the N- and C-terminal regions in the lumen and cytoplasm, respectively, and it plays a crucial role in the folding of ER proteins. Previously, the C-terminal region of URG7 (PU, residues 75-99) has been shown to modify the aggregation state of α-synuclein in the lysate of HepG2 cells. PU analogs were synthesized, and their anti-aggregation potential was tested in vitro on α-synuclein obtained using recombinant DNA technology. Circular dichroism (CD), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and microscopic techniques were used to assess the sample's behavior. The results show that the peptides studied by themselves are prone to clathrate-like structure formation of variable stability. Aggregation of α-synuclein is accompanied by desolvation of its peptide chain and an increase in intermolecular ß-sheets. The PU analogs all interact with α-synuclein aggregates and those possessing the most stable clathrate-like structures have the highest disaggregating effect. These findings suggest that the C-terminal region of URG7 may have a role in interacting and modulating α-synuclein structures and could be used to generate interesting therapeutic candidates as disaggregators of α-synuclein.


Subject(s)
Multidrug Resistance-Associated Proteins , Peptides , alpha-Synuclein , alpha-Synuclein/genetics , Bridged-Ring Compounds , Endoplasmic Reticulum , Peptides/pharmacology , Pseudogenes , Humans , Hep G2 Cells , Multidrug Resistance-Associated Proteins/genetics
2.
Biomimetics (Basel) ; 8(2)2023 May 06.
Article in English | MEDLINE | ID: mdl-37218779

ABSTRACT

Gelatin sponges are widely employed as hemostatic agents, and are gaining increasing interest as 3D scaffolds for tissue engineering. To broaden their possible application in the field of tissue engineering, a straightforward synthetic protocol able to anchor the disaccharides, maltose and lactose, for specific cell interactions was developed. A high conjugation yield was confirmed by 1H-NMR and FT-IR spectroscopy, and the morphology of the resulting decorated sponges was characterized by SEM. After the crosslinking reaction, the sponges preserve their porous structure as ascertained by SEM. Finally, HepG2 cells cultured on the decorated gelatin sponges show high viability and significant differences in the cellular morphology as a function of the conjugated disaccharide. More spherical morphologies are observed when cultured on maltose-conjugated gelatin sponges, while a more flattened aspect is discerned when cultured onto lactose-conjugated gelatin sponges. Considering the increasing interest in small-sized carbohydrates as signaling cues on biomaterial surfaces, systematic studies on how small carbohydrates might influence cell adhesion and differentiation processes could take advantage of the described protocol.

3.
Electrophoresis ; 38(6): 922-929, 2017 03.
Article in English | MEDLINE | ID: mdl-27935082

ABSTRACT

A novel capillary zone electrophoresis (CZE) method was developed for an improved separation and size characterization of pristine gold nanoparticles (AuNP) using uncoated fused-silica capillaries with UV-Vis detection at 520 nm. To avoid colloid aggregation and/or adsorption during runs, poly(sodium 4-styrenesulfonate) (PSS) was added (1%, w/v) in the running buffer (CAPS 10 mM, pH 11). This polyelectrolyte conferred an enhanced stabilization to AuNP, both steric and electrostatic, exalting at the same time their differences in electrophoretic mobility. Resolution was further and successfully improved through a stepwise field strength gradient by the application of 25 kV for the first 5 min and then 10 kV. Migration times varied linearly with particles diameters showing relative standard deviations better than 1% for daily experiments and 3% for interday experiments. A comparison with the size distribution obtained by transmission electron microscopy (TEM) allowed assessing that the electrophoretic profile can reasonably be considered as representative of the effective size heterogeneity of each colloid. Finally, the practical utility of the proposed method was demonstrated by measuring the core diameter of a gold colloid sample produced by chemical synthesis which was in good agreement with the value obtained by TEM measurements.


Subject(s)
Electrophoresis, Capillary/methods , Gold/chemistry , Metal Nanoparticles/analysis , Polymers/chemistry , Sulfonic Acids/chemistry , Buffers , Electricity , Ions , Microscopy, Electron, Transmission , Particle Size , Physical Phenomena , Silicon Dioxide/chemistry
4.
J Colloid Interface Sci ; 489: 76-84, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27597260

ABSTRACT

Laser ablation of bulk target in liquid allows to obtain stable nanoparticles and nanostructures, also in metastable phases, limiting the use of hazardous reagents and extreme reaction conditions. Titanium carbide (TiC) is a ceramic compound with several technological applications ranging from biocompatible materials to wear resistant coatings. The possibility to obtain core/shell structures expands its range of application due to the ability of modify the surface properties of the core ceramic material. TiC and metallic titanium targets have been ablated by means of an ultra-short laser source in different liquid media (water, acetone, n-hexane and toluene). The obtained colloidal solutions have been characterized by TEM, XRD and micro-Raman analysis. In all the used experimental conditions TiC nanoparticles have been produced. During water and acetone mediated ablations, the oxidation of titanium has been observed, whereas by using oxygen free solvents, such as n-hexane and toluene, core/shell TiC nanoparticles embedded in amorphous and graphitic carbon shell, respectively, have been obtained.

5.
Nat Prod Res ; 28(20): 1709-17, 2014.
Article in English | MEDLINE | ID: mdl-25103776

ABSTRACT

Results of solid phase micro-extraction coupled to gas chromatography and mass spectrometry analyses, accomplished on sporophores of 11 species of truffles and false truffles, are reported. Volatile organic compounds (VOCs) found in Gautieria morchelliformis were dimethyl sulphide, 1,3-octadiene, 3,7-dimethyl-1,6-octadien-3-ol, amorphadiene, isoledene and cis-muurola-3,5-diene. In Hymenogaster luteus var. luteus, presence of 1,3-octadiene, 1-octen-3-ol, 3-octanone, 3-octanol and 4-acetylanisole was revealed. Two VOCs, 4-acetylanisole and ß-farnesene, constituted aroma of Hymenogaster olivaceus.Melanogaster broomeanus exhibited as components of its aroma 2-methyl-1,3-butadiene, 2-methylpropanal, 2-methylpropanol, isobutyl acetate, 3,7-dimethyl-1,6-octadien-3-ol, 3-octanone and ß-curcumene. VOC profile of Octavianina asterosperma was characterised by the presence of dimethyl sulphide, ethyl 2-methylpropanoate, methyl 2-methylbutanoate and 3-octanone. Tuber rufum var. rufum and Pachyphloeus conglomeratus showed the presence of dimethyl sulphide only.


Subject(s)
Ascomycota/chemistry , Basidiomycota/chemistry , Volatile Organic Compounds/chemistry , Esters/analysis , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Solid Phase Microextraction , Sulfides/analysis , Terpenes/chemistry , Volatile Organic Compounds/analysis
6.
Langmuir ; 29(51): 15898-906, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24328291

ABSTRACT

The adoption of a biomimetic approach in the design and fabrication of innovative materials for biomedical applications is encountering a growing interest. In particular, new molecules are being engineered on the basis of proteins present in the extracellular matrix, such as fibronectin, collagen, or elastin. Following this approach scientists expect to be able not only to obtain materials with tailored mechanical properties but also to elicit specific biological responses inherited by the mimicked tissue. In the present work, a novel peptide, engineered starting from the sequence encoded by exon 28 of human tropoelastin, was characterized from a chemical, physical, and biological point of view. The obtained molecule was observed to aggregate at high temperatures, forming a material able to induce a biological effect similar to what elastin does in the physiological context. This material seems to be a good candidate to play a relevant role in future biomedical applications with special reference to vascular surgery.


Subject(s)
Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Cell Line, Tumor/metabolism , Peptides/chemistry , Peptides/metabolism , Tissue Engineering , Tropoelastin/genetics , Amino Acid Sequence , Animals , Biomimetic Materials/toxicity , Exons/genetics , Humans , Mechanical Phenomena , Mice , Molecular Sequence Data , Peptides/toxicity , Temperature
7.
Biomacromolecules ; 14(12): 4278-88, 2013 Dec 09.
Article in English | MEDLINE | ID: mdl-24127724

ABSTRACT

Post-translational modifications play a key role in defining the biological functions of proteins. Among them, the hydroxylation of proline producing the (2S,4R)-4-hydroxyproline (Hyp) is one of the most frequent modifications observed in vertebrates, being particularly abundant in the proteins of the extracellular matrix. In collagen, hydroxylation of proline plays a critical role, conferring the correct structure and mechanical strength to collagen fibers. In elastin, the exact role of this modification is not yet understood. Here we show that Hyp-containing elastin polypeptides have flexible molecular structures, analogously to proline-containing polypeptides. In turn, the self-assembly of the elastin peptides is significantly altered by the presence of Hyp, evidencing different supramolecular structures. Also the in vitro susceptibility to protease digestion is changed. These findings give a better insight into the elastic fiber formation and degradation processes in the extracellular matrix. Furthermore, our results could contribute in defining the subtle role of proline structural variants in the folding and self-assembly of elastin-inspired peptides, helping the rational design of elastin biomaterials.


Subject(s)
Hydroxyproline/chemistry , Peptide Fragments/chemistry , Tropoelastin/chemistry , Amino Acid Sequence , Animals , Circular Dichroism , Humans , Hydroxylation , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Molecular Sequence Data , Nanofibers/chemistry , Nanofibers/ultrastructure , Protein Processing, Post-Translational , Protein Structure, Secondary , Tropoelastin/ultrastructure
8.
J Chromatogr Sci ; 50(9): 775-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22685100

ABSTRACT

Ascomata of two truffle species, Tuber borchii and T. asa-foetida, both naturally growing in woodlands of the Basilicata region (southern Italy), were identified on the basis of ascospore morphology and compared under a volatile organic compound profile to determine the particular volatile organic compounds that characterize each taxon. Solid-phase microextraction-gas chromatography-mass spectrometry analysis of the samples showed the presence of 1-methyl-1,3-butadiene as a primary component in both truffles. T. asa-foetida showed a compound, toluene, not present in T. borchii, which creates the penetrating "solvent" smell of the truffle.


Subject(s)
Ascomycota/chemistry , Volatile Organic Compounds/analysis , Ascomycota/classification , Butadienes/chemistry , Gas Chromatography-Mass Spectrometry/methods , Italy , Microscopy, Electron, Scanning , Solid Phase Microextraction/methods , Spores, Fungal/chemistry , Spores, Fungal/classification , Toluene/chemistry , Volatile Organic Compounds/isolation & purification
9.
J Org Chem ; 73(11): 4233-6, 2008 Jun 06.
Article in English | MEDLINE | ID: mdl-18433172

ABSTRACT

We report the first asymmetric synthesis of trans optically active (+) C 2 1,3-bisarylepoxide of calix[4]arene in excellent chemical yield and >99% ee, and its enantiospecific conversion to the corresponding bis-dioxolane.

10.
J Am Chem Soc ; 128(21): 6893-902, 2006 May 31.
Article in English | MEDLINE | ID: mdl-16719469

ABSTRACT

A general and nonempirical approach to determine the absolute configuration (AC) of 2-substituted chiral carboxylic acids by circular dichroism (CD) spectroscopy has been developed. In this protocol, the chiral acids are converted to the corresponding biphenyl amides, in which a flexible biphenyl probe gives rise to a Cotton effect at 250 nm (A band) in the CD spectrum, the sign of which is related to the acid AC. Two different mechanisms of transfer of chirality from the acid stereogenic center to the biphenyl moiety are operative in amides derived from 2-alkyl- and 2-aryl-substituted acids, respectively. For both classes of compounds, a model has been defined which allows one to predict, for a given acid AC, the preferred twist of the biphenyl moiety and thus the sign of the A band in the CD spectrum, related to the biphenyl torsion. Interestingly, while in alkyl-substituted substrates the preferred biphenyl twist is determined only by steric interactions, in the aryl-substituted ones the structure of the prevalent conformer and thus the biphenyl twist are dictated by arene-arene edge-to-face stabilizing interactions. Following this protocol, the AC of a 2-substituted chiral acid can be established simply by preparing its biphenyl amides, recording the CD spectrum, and looking at the sign of the A band. From the sign of such a band, the torsion of the biphenyl can be deduced and then the acid AC. Substrates having different structures and functionalities have been investigated, always obtaining reliable AC assignments by this simple protocol.

12.
Angew Chem Int Ed Engl ; 40(2): 451-454, 2001 Jan 19.
Article in English | MEDLINE | ID: mdl-29712391

ABSTRACT

A quick, simple, and reliable method to assign the absolute configuration of 1,2- and 1,3-diols: all that is needed is to measure the CD sign of the A band (250 nm) of their biphenyldioxolanes 1 (n=0, 1). The chirality of the diol induces a preferred sense of twist in the biphenyl moiety (R,R→M and S,S→P), and a positive A band (a probe of M twist) reveals an R or R,R configuration of the diol.

SELECTION OF CITATIONS
SEARCH DETAIL
...