Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Radiopharm Chem ; 7(1): 18, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35852679

ABSTRACT

BACKGROUND: The development of radiopharmaceuticals requires extensive evaluation before they can be applied in a diagnostic or therapeutic setting in Nuclear Medicine. Chemical, radiochemical, and pharmaceutical parameters must be established and verified to ensure the quality of these novel products. MAIN BODY: To provide supportive evidence for the expected human in vivo behaviour, particularly related to safety and efficacy, additional tests, often referred to as "non-clinical" or "preclinical" are mandatory. This document is an outcome of a Technical Meeting of the International Atomic Energy Agency. It summarises the considerations necessary for non-clinical studies to accommodate the regulatory requirements for clinical translation of radiopharmaceuticals. These considerations include non-clinical pharmacology, radiation exposure and effects, toxicological studies, pharmacokinetic modelling, and imaging studies. Additionally, standardisation of different specific clinical applications is discussed. CONCLUSION: This document is intended as a guide for radiopharmaceutical scientists, Nuclear Medicine specialists, and regulatory professionals to bring innovative diagnostic and therapeutic radiopharmaceuticals into the clinical evaluation process in a safe and effective way.

2.
PLoS One ; 14(12): e0225313, 2019.
Article in English | MEDLINE | ID: mdl-31830049

ABSTRACT

BACKGROUND: Metabolism in tumor shifts from oxidative phosphorylation to inefficient glycolysis resulting in overproduction of lactate (Warburg effect), and cancers may be effectively treated if this imbalance were corrected. The aim of this longitudinal study of glioblastoma in a rat model was to determine whether the ratio of lactate (surrogate marker for glycolysis) to bicarbonate (for oxidative phosphorylation), as measured via in vivo magnetic resonance imaging of hyperpolarized 13C-labeled pyruvate accurately predicts survival. METHODS: C6 Glioma implanted male Wistar rats (N = 26) were treated with an anti-vascular endothelial growth factor antibody B20.4.1.1 in a preliminary study to assess the efficacy of the drug. In a subsequent longitudinal survival study, magnetic resonance spectroscopic imaging (MRSI) was used to estimate [1-13C]Lactate and [1-13C]Bicarbonate in tumor and contralateral normal appearing brain of glioma implanted rats (N = 13) after injection of hyperpolarized [1-13C]Pyruvate at baseline and 48 hours post-treatment with B20.4.1.1. RESULTS: A survival of ~25% of B20.4.1.1 treated rats was noted in the preliminary study. In the longitudinal imaging experiment, changes in 13C Lactate, 13C Bicarbonate and tumor size measured at baseline and 48 hours post-treatment did not correlate with survival. 13C Lactate to 13C Bicarbonate ratio increased in all the 6 animals that succumbed to the tumor whereas the ratio decreased in 6 of the 7 animals that survived past the 70-day observation period. CONCLUSIONS: 13C Lactate to 13C Bicarbonate ratio (Lac/Bic) at 48 hours post-treatment is highly predictive of survival (p = 0.003). These results suggest a potential role for the 13C Lac/Bic ratio serving as a valuable measure of tumor metabolism and predicting therapeutic response.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Bicarbonates/metabolism , Brain Neoplasms/metabolism , Brain/metabolism , Glioma/metabolism , Lactic Acid/metabolism , Animals , Biomarkers/metabolism , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Glioma/diagnostic imaging , Glioma/drug therapy , Glycolysis , Magnetic Resonance Spectroscopy , Male , Neoplasm Transplantation , Oxidative Phosphorylation , Prognosis , Rats , Rats, Wistar , Survival Rate , Treatment Outcome , Vascular Endothelial Growth Factor A/immunology
3.
Tomography ; 3(3): 123-130, 2017 Sep.
Article in English | MEDLINE | ID: mdl-30042976

ABSTRACT

We evaluated the use of hyperpolarized 13C magnetic resonance imaging (MRI) in an open-chest rat model of myocardial infarction to image regional changes in myocardial metabolism. In total, 10 rats were examined before and after 30 minutes of occlusion of the left anterior descending coronary artery using hyperpolarized [1-13C]pyruvate. Cardiac metabolic images of [1-13C]pyruvate and its metabolites [1-13C]lactate, [1-13C]alanine, and [13C]bicarbonate were obtained before and after ischemia. Significant reduction in the [1-13C]alanine and [1-13C]lactate signals were observed in the ischemic region post ischemia. The severity of the ischemic insult was verified by increased blood levels of troponin I and by using late contrast-enhanced MRI that showed enhanced signal in the ischemic region. This study shows that hyperpolarized MRI can be used to image regional metabolic changes in the in vivo rat heart in an open-chest model of ischemia reperfusion. Hyperpolarized MRI enables new possibilities for evaluating changes in cardiac metabolism noninvasively and in real time, which potentially could be used for research to evaluate new treatments and metabolic interventions for myocardial ischemia and to apply knowledge to future application of the technique in humans.

4.
Magn Reson Med ; 73(1): 51-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24435823

ABSTRACT

PURPOSE: To use dynamic magnetic resonance spectroscopy (MRS) of hyperpolarized (13)C-pyruvate to follow the progress over time in vivo of breast cancer metabolism in the MMTV-PymT model, and to follow the response to the anti-estrogen drug tamoxifen. METHODS: Tumor growth was monitored by anatomical MRI by measuring tumor volumes. Dynamic MRS of hyperpolarized (13)C was used to measure an "apparent" pyruvate-to-lactate rate constant (kp) of lactate dehydrogenase (LDH) in vivo. Further, ex vivo pathology and in vitro LDH initial reaction velocity were evaluated. RESULTS: Tamoxifen significantly halted the tumor growth measured as tumor volume by MRI. In the untreated animals, kp correlated with tumor growth. The kP was somewhat but not significantly lower in the treated group. Studies in vitro confirmed the effects of tamoxifen on tumor growth, and here the LDH reaction velocity was reduced significantly in the treated group. CONCLUSION: These hyperpolarized (13)C MRS findings indicate that tumor metabolic changes affects kP. The measured kp did not relate to treatment response to the same extent as did tumor growth, histological evaluation, and in vitro determination of LDH activity.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Mammary Neoplasms, Experimental/diagnosis , Mammary Neoplasms, Experimental/drug therapy , Pyruvic Acid/pharmacokinetics , Tamoxifen/administration & dosage , Animals , Antineoplastic Agents, Hormonal/administration & dosage , Disease Progression , Drug Monitoring/methods , Female , Mammary Neoplasms, Experimental/metabolism , Mice , Pyruvic Acid/metabolism , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome
5.
NMR Biomed ; 26(11): 1496-500, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23794521

ABSTRACT

A change in myocardial metabolism is a known effect of several diseases. MRS with hyperpolarized (13)C-labelled pyruvate is a technique capable of detecting changes in myocardial pyruvate metabolism, and has proven to be useful for the evaluation of myocardial ischaemia in vivo. However, during fasting, the myocardial glucose oxidation is low and the fatty acid oxidation (ß-oxidation) is high, which complicates the interpretation of pyruvate metabolism with the technique. The aim of this study was to investigate whether the infusion of glucose, insulin and potassium (GIK) could increase the myocardial glucose oxidation in the citric acid cycle, reflected as an increase in the [(13)C]bicarbonate signal in cardiac hyperpolarized [1-(13)C]pyruvate MRS measurements in fasted rats. Two groups of rats were infused with two different doses of GIK and investigated by MRS after injection of hyperpolarized [1-(13)C]pyruvate. No [(13)C]bicarbonate signal could be detected in the fasted state. However, a significant increase in the [(13)C]bicarbonate signal was observed by the infusion of a high dose of GIK. This study demonstrates that a high [(13)C]bicarbonate signal can be achieved by GIK infusion in fasted rats. The increased [(13)C]bicarbonate signal indicates an increased flux of pyruvate through the pyruvate dehydrogenase enzyme complex and an increase in myocardial glucose oxidation through the citric acid cycle.


Subject(s)
Bicarbonates/metabolism , Glucose/pharmacology , Insulin/pharmacology , Magnetic Resonance Spectroscopy , Myocardium/metabolism , Potassium/pharmacology , Pyruvic Acid/metabolism , Alanine/metabolism , Animals , Blood Glucose/metabolism , Carbon Isotopes , Glucose/administration & dosage , Insulin/administration & dosage , Lactates/metabolism , Male , Potassium/administration & dosage , Rats , Rats, Sprague-Dawley , Signal Processing, Computer-Assisted
6.
Diabetes Metab Res Rev ; 29(2): 125-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23166087

ABSTRACT

BACKGROUND: This experimental study explores a novel magnetic resonance imaging/spectroscopic (MRI/MRS) method that measures changes in renal metabolism in a diabetic rat model. This hyperpolarized metabolic MRI/MRS method allows monitoring of metabolic processes in seconds by >10 000-fold enhancement of the MR signal. The method has shown that the conversion of pyruvate to bicarbonate, i.e. pyruvate dehydrogenase (PDH) activity, is significantly altered in the myocardium already at the onset of diabetes, and the predominant Warburg effect is a valuable cancer maker via the lactate dehydrogenase (LDH) activity. We hypothesize that a similar change in PDH and LDH could be found in the early diabetic kidney. METHODS: In a streptozotocin rat model of type 1 diabetes, hyperpolarized (13) C-MRI and blood oxygenation level-dependent (1) H-MRI was employed to investigate the changes in renal metabolism in the diabetic and the control kidneys in vivo. RESULTS: The diabetic kidney showed a 149% increase in the lactate/pyruvate ratio compared with the control rat kidney, whereas the bicarbonate/pyruvate ratio was unchanged between the diabetic and the control rat kidneys, consistent with literature findings. These metabolic findings paralleled a reduced intrarenal oxygen availability as found by blood oxygenation level-dependent MRI. DISCUSSION: Hyperpolarized (13) C-MRI shows promise in the diagnosis and monitoring of early renal changes associated with diabetes, with the pyruvate/lactate ratio as an imaging biomarker for regional renal changes.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Kidney/metabolism , Pyruvic Acid/metabolism , Animals , Bicarbonates/metabolism , Carbon Isotopes , Diabetes Mellitus, Experimental/urine , Female , Kidney/physiopathology , L-Lactate Dehydrogenase/metabolism , Lactic Acid/metabolism , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Potassium/metabolism , Pyruvate Dehydrogenase (Lipoamide)/metabolism , Rats , Rats, Wistar , Sodium/metabolism
7.
J Cereb Blood Flow Metab ; 32(8): 1508-14, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22453630

ABSTRACT

The branched chain amino acid transaminase (BCAT) has an important role in nitrogen shuttling and glutamate metabolism in the brain. The purpose of this study was to describe the cerebral distribution and metabolism of hyperpolarized 2-keto[1-(13)C]isocaproate (KIC) in the normal rat using magnetic resonance modalities. Hyperpolarized KIC is metabolized to [1-(13)C]leucine (leucine) by BCAT. The results show that KIC and its metabolic product, leucine, are present at imageable quantities 20 seconds after end of KIC administration throughout the brain. Further, significantly higher metabolism was observed in hippocampal regions compared with the muscle tissue. In conclusion, the cerebral metabolism of hyperpolarized KIC is imaged and hyperpolarized KIC may be a promising substrate for evaluation of cerebral BCAT activity in conjunction with neurodegenerative disease.


Subject(s)
Brain/metabolism , Keto Acids/pharmacokinetics , Leucine/metabolism , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Transaminases/metabolism , Animals , Biotransformation , Brain/enzymology , Carbon Isotopes , Keto Acids/administration & dosage , Molecular Structure , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...