Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 388(3): 765-773, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38278551

ABSTRACT

Neuropathic pain is a pressing unmet medical need requiring novel nonopioid-based therapeutic approaches. Using unbiased transcriptomic analysis, we found that the expression of Gpr31, a G protein-coupled receptor, increased in the dorsal horn of the spinal cord in rats with traumatic nerve injury-induced neuropathic pain. Daily intrathecal injections of siGpr31 reversed behavioral hypersensitivities in a time-dependent manner. GPR31, a Gα i protein-coupled receptor, has recently been cloned and is a receptor for 12-(S)-hydroxyeicosatetraenoic acid [12-(S)-HETE]. The lack of commercially available GPR31 antagonists has hampered the understanding of this receptor in pathophysiological states, including pain. To investigate this, our first approach was to identify novel GPR31 antagonists. Using a multidisciplinary approach, including in silico modeling, we identified the first highly potent and selective small-molecule GPR31 antagonist, SAH2. Here, we characterize the pharmacological activity in well-described models of neuropathic pain in rodents and provide evidence that 12-(S)-HETE/GPR31-dependent behavioral hypersensitivities are mediated through mitogen-activated protein kinase (MAPK) activation in the spinal cord. Our studies provide the pharmacological rationale for investigating contributions of GPR31 along the pain neuroaxis and the development of nonopioid GPR31-targeted strategies. SIGNIFICANCE STATEMENT: We have identified the first highly selective GPR31 antagonist. Using this antagonist, we have demonstrated that GPR31 signaling in the spinal cord is pronociceptive and MAPK pathways provided signaling mechanisms downstream of GPR31 activation in these processes.


Subject(s)
Hypersensitivity , Neuralgia , Rats , Animals , Spinal Cord/metabolism , Receptors, G-Protein-Coupled/metabolism , Mitogen-Activated Protein Kinases/metabolism , Neuralgia/metabolism , Hydroxyeicosatetraenoic Acids/metabolism , Hydroxyeicosatetraenoic Acids/therapeutic use , Hypersensitivity/metabolism , Hyperalgesia/metabolism , Spinal Cord Dorsal Horn/metabolism
2.
Int J Mol Sci ; 24(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36835176

ABSTRACT

Skeletal muscle atrophy is a condition characterized by a loss of muscle mass and muscle strength caused by an imbalance between protein synthesis and protein degradation. Muscle atrophy is often associated with a loss of bone mass manifesting as osteoporosis. The aim of this study was to evaluate if chronic constriction injury (CCI) of the sciatic nerve in rats can be a valid model to study muscle atrophy and consequent osteoporosis. Body weight and body composition were assessed weekly. Magnetic resonance imaging (MRI) was performed on day zero before ligation and day 28 before sacrifice. Catabolic markers were assessed via Western blot and Quantitative Real-time PCR. After the sacrifice, a morphological analysis of the gastrocnemius muscle and Micro-Computed Tomography (Micro-CT) on the tibia bone were performed. Rats that underwent CCI had a lower body weight increase on day 28 compared to the naive group of rats (p < 0.001). Increases in lean body mass and fat mass were also significantly lower in the CCI group (p < 0.001). The weight of skeletal muscles was found to be significantly lower in the ipsilateral hindlimb compared to that of contralateral muscles; furthermore, the cross-sectional area of muscle fibers decreased significantly in the ipsilateral gastrocnemius. The CCI of the sciatic nerve induced a statistically significant increase in autophagic and UPS (Ubiquitin Proteasome System) markers and a statistically significant increase in Pax-7 (Paired Box-7) expression. Micro-CT showed a statistically significant decrease in the bone parameters of the ipsilateral tibial bone. Chronic nerve constriction appeared to be a valid model for inducing the condition of muscle atrophy, also causing changes in bone microstructure and leading to osteoporosis. Therefore, sciatic nerve constriction could be a valid approach to study muscle-bone crosstalk and to identify new strategies to prevent osteosarcopenia.


Subject(s)
Bone Diseases, Metabolic , Muscular Atrophy , Osteoporosis , Sciatic Nerve , Animals , Rats , Body Weight , Bone Diseases, Metabolic/pathology , Constriction , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Osteoporosis/pathology , Rats, Sprague-Dawley , Sciatic Nerve/injuries , X-Ray Microtomography
3.
Cell Mol Neurobiol ; 42(8): 2909-2918, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34773542

ABSTRACT

Emerging evidence implicates the sphingosine-1-phosphate receptor subtype 1 (S1PR1) in the development of neuropathic pain. Continued investigation of the signaling pathways downstream of S1PR1 are needed to support development of S1PR1 antagonists. In rodents, intrathecal (i.th.) injection of SEW2871, a selective S1PR1 agonist, activates the nod-like receptor family, pyrin domain containing 3 inflammasome, increases interleukin-1ß (IL-1ß) and causes behavioral hypersensitivity. I.th. injection of a IL-1ß receptor antagonist blocks SEW2871-induced hypersensitivity, suggesting that IL-1ß contributes to S1PR1's actions. Interestingly, previous studies have suggested that IL-1ß increases the expression/activity of adenosine kinase (ADK), a key regulator of adenosine signaling at its receptors (ARs). Increased ADK expression reduces adenosine signaling whereas inhibiting ADK restores the action of adenosine. Here, we show that SEW287-induced behavioral hypersensitivity is associated with increased expression of ADK in astrocytes of the dorsal horn of the spinal cord. Moreover, the ADK inhibitor, ABT702, blocks SEW2871-induced hypersensitivity. These findings link ADK activation to S1PR1. If SEW2871-induced pain is mediated by IL-1ß, which in turn activates ADK and leads to mechano-allodynia, then blocking ADK should attenuate IL-1ß effects. In support of this idea, recombinant rat (rrIL-1ß)-induced allodynia was blocked by at least 90% with ABT702, functionally linking ADK to IL-1ß. Moreover, the selective A3AR antagonist, MRS1523, prevents the ability of ABT702 to block SEW2871 and IL-1ß-induced allodynia, implicating A3AR signaling in the beneficial effects exerted by ABT702. Our findings provide novel mechanistic insight into how S1PR1 signaling in the spinal cord produces hypersensitivity through IL1-ß and ADK activation.


Subject(s)
Adenosine Kinase , Inflammasomes , Adenosine , Animals , Hyperalgesia/metabolism , Interleukin-1beta/metabolism , NLR Proteins , Oxadiazoles , Rats , Rats, Sprague-Dawley , Sphingosine-1-Phosphate Receptors , Spinal Cord Dorsal Horn/metabolism , Thiophenes
4.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34681199

ABSTRACT

Paclitaxel is a chemotherapeutic drug used for cancer treatment. Chemotherapy-induced peripheral neuropathy (CIPN) is a common major dose-limiting side effect of many chemotherapeutic agents, including paclitaxel. CIPN is accompanied by mechanical and thermal hypersensitivity that resolves within weeks, months, or years after drug termination. To date, there is no available preventive strategy or effective treatment for CIPN due to the fact that its etiology has not been fully explained. It is clear that free radicals are implicated in many neurodegenerative diseases and recent studies have shown the important role of oxidative stress in development of CIPN. Here, we observed how, in rats, the administration of a natural antioxidant such as the bergamot polyphenolic extract (BPF), can play a crucial role in reducing CIPN. Paclitaxel administration induced mechanical allodynia and thermal hyperalgesia, which began to manifest on day seven, and reached its lowest levels on day fifteen. Paclitaxel-induced neuropathic pain was associated with nitration of proteins in the spinal cord including MnSOD, glutamine synthetase, and glutamate transporter GLT-1. This study showed that the use of BPF, probably by inhibiting the nitration of crucial proteins involved in oxidative stress, improved paclitaxel-induced pain behaviors relieving mechanical allodynia, thermal hyperalgesia, thus preventing the development of chemotherapy-induced neuropathic pain.

5.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33621215

ABSTRACT

The A3 adenosine receptor (A3AR) has emerged as a therapeutic target with A3AR agonists to tackle the global challenge of neuropathic pain, and investigation into its mode of action is essential for ongoing clinical development. Immune cell A3ARs, and their activation during pathology, modulate cytokine release. Thus, the use of immune cells as a cellular substrate for the pharmacological action of A3AR agonists is enticing, but unknown. The present study discovered that Rag-KO mice lacking T and B cells, as compared with WT mice, are insensitive to the anti-allodynic effects of A3AR agonists. Similar findings were observed in interleukin-10 and interleukin-10 receptor knockout mice. Adoptive transfer of CD4+ T cells from WT mice infiltrated the dorsal root ganglion (DRG) and restored A3AR agonist-mediated anti-allodynia in Rag-KO mice. CD4+ T cells from Adora3-KO or Il10-KO mice did not. Transfer of CD4+ T cells from WT mice, but not Il10-KO mice, into Il10-KO mice or Adora3-KO mice fully reinstated the anti-allodynic effects of A3AR activation. Notably, A3AR agonism reduced DRG neuron excitability when cocultured with CD4+ T cells in an IL-10-dependent manner. A3AR action on CD4+ T cells infiltrated in the DRG decreased phosphorylation of GluN2B-containing N-methyl-D-aspartate receptors at Tyr1472, a modification associated with regulating neuronal hypersensitivity. Our findings establish that activation of A3AR on CD4+ T cells to release IL-10 is required and sufficient evidence for the use of A3AR agonists as therapeutics.


Subject(s)
Adenosine A3 Receptor Agonists/pharmacology , CD4-Positive T-Lymphocytes/immunology , Ganglia, Spinal/immunology , Interleukin-10/immunology , Neuralgia/drug therapy , Neurons/immunology , Receptor, Adenosine A3/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/pathology , Ganglia, Spinal/pathology , Interleukin-10/genetics , Mice , Mice, Knockout , Neuralgia/genetics , Neuralgia/immunology , Neuralgia/pathology , Neurons/pathology , Receptor, Adenosine A3/genetics
6.
Antioxidants (Basel) ; 9(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339104

ABSTRACT

In clinical practice, inflammatory pain is an important, unresolved health problem, despite the utilization of non-steroidal anti-inflammatory drugs (NSAIDs). In the last decade, different studies have proven that reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved in the development and maintenance of inflammatory pain and hyperalgesia via the post-translation modification of key proteins, such as manganese superoxide dismutase (MnSOD). It is well-known that inducible cyclooxygenase 2 (COX-2) plays a crucial role at the beginning of the inflammatory response by converting arachidonic acid into proinflammatory prostaglandin PGE2 and then producing other proinflammatory chemokines and cytokines. Here, we investigated the impact of oxidative stress on COX-2 and prostaglandin (PG) pathways in paw exudates, and we studied how this mechanism can be reversed by using antioxidants during hyperalgesia in a well-characterized model of inflammatory pain in rats. Our results reveal that during the inflammatory state, induced by intraplantar administration of carrageenan, the increase of PGE2 levels released in the paw exudates were associated with COX-2 nitration. Moreover, we showed that the inhibition of ROS with Mn (III) tetrakis (4-benzoic acid) porphyrin(MnTBAP) antioxidant prevented COX-2 nitration, restored the PGE2 levels, and blocked the development of thermal hyperalgesia.

7.
Antioxidants (Basel) ; 9(11)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182469

ABSTRACT

Neuropathic pain is a chronic painful disease. Data have shown that reactive oxygen species (ROS) are implicated in chronic pain. Particularly, the enhanced ROS production alters the mitochondrial genome and proteome through the accumulation of lipid peroxidation products, such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA). Sirtuin 3 (SIRT3) is a mitochondrial protein and its activity can reduce ROS levels by modulating key antioxidant enzymes, such as manganese superoxide dismutase (MnSOD). Here, we evaluated the role of SIRT3 in the maintenance of basal levels of ROS in a model of chronic constriction injury (CCI) of the sciatic nerve and the protective effects of a natural antioxidant, the bergamot polyphenolic fraction (BPF). Rats were exposed to CCI of the sciatic nerve in the presence or absence of BPF (25-75 mg/kg). Level of acetylation, post-translational modulation on cysteine residues of proteins by HNE and SIRT3 activation, were detected in the spinal cord through western blotting, WES methodology and enzymatic assays. Our results reported that SIRT3 carbonylation and therefore its inactivation contributes to mitochondrial MnSOD hyperacetylation during CCI induced neuropathic pain in rats. In particular, we have demonstrated a close relation between oxidative stress, hyperalgesia, allodynia and sirtuins inactivation reverted by BPF administration.

8.
Pharmacol Res ; 157: 104851, 2020 07.
Article in English | MEDLINE | ID: mdl-32423865

ABSTRACT

Oxidative stress induced post-translational protein modifications are associated with the development of inflammatory hypersensitivities. At least 90% of cellular reactive oxygen species (ROS) are produced in the mitochondria, where the mitochondrial antioxidant, manganese superoxide dismutase (MnSOD), is located. MnSOD's ability to reduce ROS is enhanced by the mitochondrial NAD+-dependent deacetylase sirtuin (SIRT3). SIRT3 can reduce ROS levels by deacetylating MnSOD and enhancing its ability to neutralize ROS or by enhancing the transcription of MnSOD and other oxidative stress-responsive genes. SIRT3 can be post-translationally modified through carbonylation which results in loss of activity. The contribution of post-translational SIRT3 modifications in central sensitization is largely unexplored. Our results reveal that SIRT3 carbonylation contributes to spinal MnSOD inactivation during carrageenan-induced thermal hyperalgesia in rats. Moreover, inhibiting ROS with natural and synthetic antioxidants, prevented SIRT3 carbonylation, restored the enzymatic activity of MnSOD, and blocked the development of thermal hyperalgesia. These results suggest that therapeutic strategies aimed at inhibiting post-translational modifications of SIRT3 may provide beneficial outcomes in pain states where ROS have been documented to play an important role in the development of central sensitization.


Subject(s)
Analgesics/pharmacology , Antioxidants/pharmacology , Hyperalgesia/drug therapy , Oxidative Stress/drug effects , Pain Threshold/drug effects , Reactive Oxygen Species/metabolism , Sirtuins/metabolism , Spinal Cord/drug effects , Spinal Cord/enzymology , Animals , Cell Line, Tumor , Humans , Hyperalgesia/enzymology , Hyperalgesia/genetics , Hyperalgesia/physiopathology , Male , Metalloporphyrins/pharmacology , Protein Carbonylation , Rats, Sprague-Dawley , Resveratrol/pharmacology , Signal Transduction , Sirtuins/genetics , Spinal Cord/physiopathology , Superoxide Dismutase/metabolism
9.
Pain ; 161(7): 1425-1441, 2020 07.
Article in English | MEDLINE | ID: mdl-32187120

ABSTRACT

Extracellular nucleosides and nucleotides have widespread functions in responding to physiological stress. The "purinome" encompasses 4 G-protein-coupled receptors (GPCRs) for adenosine, 8 GPCRs activated by nucleotides, 7 adenosine 5'-triphosphate-gated P2X ion channels, as well as the associated enzymes and transporters that regulate native agonist levels. Purinergic signaling modulators, such as receptor agonists and antagonists, have potential for treating chronic pain. Adenosine and its analogues potently suppress nociception in preclinical models by activating A1 and/or A3 adenosine receptors (ARs), but safely harnessing this pathway to clinically treat pain has not been achieved. Both A2AAR agonists and antagonists are efficacious in pain models. Highly selective A3AR agonists offer a novel approach to treat chronic pain. We have explored the structure activity relationship of nucleoside derivatives at this subtype using a computational structure-based approach. Novel A3AR agonists for pain control containing a bicyclic ring system (bicyclo [3.1.0] hexane) in place of ribose were designed and screened using an in vivo phenotypic model, which reflected both pharmacokinetic and pharmacodynamic parameters. High specificity (>10,000-fold selective for A3AR) was achieved with the aid of receptor homology models based on related GPCR structures. These A3AR agonists are well tolerated in vivo and highly efficacious in models of chronic neuropathic pain. Furthermore, signaling molecules acting at P2X3, P2X4, P2X7, and P2Y12Rs play critical roles in maladaptive pain neuroplasticity, and their antagonists reduce chronic or inflammatory pain, and, therefore, purine receptor modulation is a promising approach for future pain therapeutics. Structurally novel antagonists for these nucleotide receptors were discovered recently.


Subject(s)
Chronic Pain , Neuralgia , Adenosine , Chronic Pain/drug therapy , Humans , Neuralgia/drug therapy , Receptors, Purinergic , Structure-Activity Relationship
10.
J Exp Med ; 215(5): 1301-1313, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29703731

ABSTRACT

The development of chemotherapy-induced painful peripheral neuropathy is a major dose-limiting side effect of many chemotherapeutics, including bortezomib, but the mechanisms remain poorly understood. We now report that bortezomib causes the dysregulation of de novo sphingolipid metabolism in the spinal cord dorsal horn to increase the levels of sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) ligands, S1P and dihydro-S1P. Accordingly, genetic and pharmacological disruption of S1PR1 with multiple S1PR1 antagonists, including FTY720, blocked and reversed neuropathic pain. Mice with astrocyte-specific alterations of S1pr1 did not develop neuropathic pain and lost their ability to respond to S1PR1 inhibition, strongly implicating astrocytes as a primary cellular substrate for S1PR1 activity. At the molecular level, S1PR1 engaged astrocyte-driven neuroinflammation and altered glutamatergic homeostasis, processes blocked by S1PR1 antagonism. Our findings establish S1PR1 as a target for therapeutic intervention and provide insight into cellular and molecular pathways. As FTY720 also shows promising anticancer potential and is FDA approved, rapid clinical translation of our findings is anticipated.


Subject(s)
Bortezomib/adverse effects , Neuralgia/chemically induced , Neuralgia/metabolism , Sphingolipids/metabolism , Administration, Oral , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Ceramides/biosynthesis , Fingolimod Hydrochloride/administration & dosage , Fingolimod Hydrochloride/pharmacology , Glutamates/metabolism , Male , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Rats, Sprague-Dawley , Receptors, Lysosphingolipid/antagonists & inhibitors , Receptors, Lysosphingolipid/metabolism , Spinal Cord/drug effects , Spinal Cord/pathology
11.
Trials ; 18(1): 605, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29258584

ABSTRACT

BACKGROUND: The incidence of post-surgical chronic pain ranges between 20% and 40% in Europe. Osteoarthritis pain after prosthesis implantation is one of the most severe secondary syndromes, depending not only on surgery but also on organic changes before and after joints replacement. No data are available about risk factors. An excessive inflammatory response plays a central role but a best therapy is not defined yet. It is not clear whether opioid administration could influence post-surgical pain and lead to tolerance or addiction. Interestingly, the immune system, together with the nervous and peptidergic ones, is involved in hypersensibility. The connection across the three biological systems lies in the presence of opioid receptors on immune cells surface. Here, we show a method to analyze whether opioids could modulate lymphocytes, by proposing opioid receptors as biological markers to prevent chronic pain and opioid tolerance or addiction after hip surgery. METHODS/DESIGN: After institutional independent ethics committee approval, 60 patients, in pain and undergoing hip surgery, will be enrolled in a single-blind, randomized, phase IV, pilot study. Pain treatment will be selected inside a class of non-steroidal anti-inflammatory drugs (NAISDs) or paracetamol or a class of opioids, into three medication arms: 25 mg tapentadol twice daily; 75 mg tapentadol twice daily; NSAIDs or paracetamol in accordance with surgeon's custom. For each group, we will collect blood samples before, during and after surgery, to apply molecular analysis. We will perform lymphocyte opioid receptors genes and proteins expression and functional analysis. Data will be statistically analyzed. DISCUSSION: This project has the potential to obtain a personalized diagnostic kit, by considering lymphocyte opioid receptors as biological markers. Starting from a simple blood sample, it will be possible to decide the best therapy for a single patient. Using a noninvasive approach, we expect to fix a daily standard dose and timing, before and after surgery, to bypass hip chronic pain and the insurgence of tolerance or addiction. The analysis of opioid receptors sensitivity will help to identify the best drug administration in each specific case (tailored therapy). TRIAL REGISTRATION: ISRCTN, ISRCTN12559751 . Retrospectively registered on 23 May 2017.


Subject(s)
Analgesics, Opioid/therapeutic use , Arthralgia/prevention & control , Arthroplasty, Replacement, Hip/adverse effects , Chronic Pain/prevention & control , Drug Tolerance , Lymphocytes/drug effects , Opioid-Related Disorders/prevention & control , Osteoarthritis, Hip/surgery , Pain, Postoperative/prevention & control , Receptors, Opioid/agonists , Analgesics, Opioid/adverse effects , Arthralgia/blood , Arthralgia/diagnosis , Biomarkers/blood , Chronic Pain/blood , Chronic Pain/diagnosis , Clinical Protocols , Humans , Lymphocytes/metabolism , Opioid-Related Disorders/diagnosis , Opioid-Related Disorders/etiology , Osteoarthritis, Hip/blood , Osteoarthritis, Hip/diagnosis , Pain Measurement , Pain, Postoperative/blood , Pain, Postoperative/diagnosis , Pilot Projects , Receptors, Opioid/blood , Research Design , Risk Assessment , Risk Factors , Risk Management , Rome , Single-Blind Method , Time Factors , Treatment Outcome
12.
Pharmacol Res ; 111: 767-773, 2016 09.
Article in English | MEDLINE | ID: mdl-27480201

ABSTRACT

Considerable evidence demonstrated that the central role of reactive oxygen species and reactive nitrogen species (ROS and RNS) in the development of thermal hyperalgesia is associated to acute and chronic inflammation. Idebenone (IDE), a synthetic analogue of the endogenous cellular antioxidant coenzyme Q10 (CoQ10), is an active drug in the central nervous system which shows a protection in a variety of neurological disorders. Since it is lipophilic, poorly water soluble and highly bound to plasma proteins, different technological approaches have been explored to increase its solubility and new pharmaceutical properties. Therefore, it has been complexed with HP-ß-cyclodextrins (HP) and its efficacy has been assessed in an animal model of carrageenan-induced thermal hyperalgesia. All male rats used for this study received a subplantar injection of carrageenan into the right hindpaw in the presence or absence of IDE alone and IDE/HP complex. We observed that IDE poorly reduced painful carrageenan effects whereas IDE/HP complex was able to prevent carrageenan-induced hyperalgesia and edema in a dose-dependent manner, reducing spinal MDA levels and protein nitration. Hence, our results demonstrated that when complexed with HP, idebenone exerts a potent analgesic and anti-inflammatory efficacy.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Carrageenan , Hyperalgesia/prevention & control , Inflammation/prevention & control , Ubiquinone/analogs & derivatives , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Analgesics/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Antioxidants/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Compounding , Edema/chemically induced , Edema/prevention & control , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/physiopathology , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/physiopathology , Superoxide Dismutase/metabolism , Time Factors , Ubiquinone/chemistry , Ubiquinone/pharmacology
13.
PLoS One ; 11(5): e0156039, 2016.
Article in English | MEDLINE | ID: mdl-27227548

ABSTRACT

Citrus Bergamia Risso, commonly known as Bergamot, is a fruit whose Essential Oil and Bergamot Polyphenolic Fraction have numerous medicinal properties. It is also an excellent antioxidant and in this study, for the first time, its potential effect on morphine induced tolerance in mice has been investigated. Our studies revealed that development of antinociceptive tolerance to repeated doses of morphine in mice is consistently associated with increased formation of superoxide, malondialdehyde and tyrosine-nitrated proteins in the dorsal horn of the spinal cord such as the enzyme glutamine synthase. Nitration of this protein is intimately linked to inactivation of its biological function and resulting increase of glutamate levels in the spinal cord. Administration of Bergamot Polyphenolic Fraction (5-50 mg/kg) attenuated tolerance development. This effect was accompanied by reduction of superoxide and malondialdehyde production, prevention of GS nitration, re-establishment of its activity and of glutamate levels. Our studies confirmed the main role of free radicals during the cascade of events induced by prolonged morphine treatment and the co-administration of natural derivatives antioxidant such as Bergamot Polyphenolic Fraction can be an important therapeutic approach to restore opioids analgesic efficacy.


Subject(s)
Analgesics, Opioid/toxicity , Drug Tolerance , Hyperalgesia/drug therapy , Morphine/toxicity , Oxidative Stress/drug effects , Plant Oils/pharmacology , Spinal Cord/drug effects , Animals , Antioxidants/pharmacology , Hyperalgesia/chemically induced , Hyperalgesia/pathology , Male , Mice , Spinal Cord/pathology
14.
PLoS One ; 11(3): e0151386, 2016.
Article in English | MEDLINE | ID: mdl-26974325

ABSTRACT

The ability of mammals to feel noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors, which express specific membrane receptors, such as the Transient Receptor Potential (TRP) family. Here, we show that one of the most important nociceptive-like pathways is conserved in the freshwater coelenterate Hydra vulgaris, the most primitive organism possessing a nervous system. In particular, we found that H. vulgaris expresses TRPM3, a nociceptor calcium channel involved in the detection of noxious heat in mammals. Furthermore, we detected that both heat shock and TRPM3 specific agonist (i.e., pregnenolone sulfate) induce the modulation of the heat shock protein 70 (HSP70) and the nitric oxide synthase (NOS), two genes activated by TRP-mediated heat painful stimuli in mammals. As expected, these effects are inhibited by a TRPM3 antagonist (i.e., mefenamic acid). Interestingly, the TRPM3 agonist and heat shock also induce the expression of nuclear transcription erythroid 2-related factor (Nrf2) and superoxide dismutase (SOD), known markers of oxidative stress; noteworthy gene expression was also inhibited by the TRPM3 antagonist. As a whole, our results demonstrate the presence of conserved molecular oxidative/nociceptive-like pathways at the primordial level of the animal kingdom.


Subject(s)
Hydra/metabolism , Nociception , TRPM Cation Channels/metabolism , Animals , Gene Expression Regulation/drug effects , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response/drug effects , Heat-Shock Response/genetics , Hydra/drug effects , Hydra/genetics , Nociception/drug effects , Pregnenolone/pharmacology , Protein Transport/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , TRPM Cation Channels/genetics
15.
Trials ; 16: 357, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26272452

ABSTRACT

BACKGROUND: Inflammatory response is one of the key components of pain perception. Continuous infusion (CWI) of local anesthetics has been shown to be effective in controlling pain and reducing postoperative morphine consumption, but the effect of adding a potent anti-inflammatory drug (such as a steroid) has never been addressed. In our study, we want to investigate the effect of CWI with local anesthetic + methylprednisolone on acute and persistent pain, correlating clinical data with biomarkers of inflammation and genetic background. METHODS/DESIGN: After approval by their institutional review board, three hospitals will enroll 120 patients undergoing major abdominal surgery in a randomized, double-blind, phase III study. After a 24-h CWI of ropivacaine 0.2 % + methylprednisolone 1 mg/kg, patients will be randomly assigned to receive either ropivacaine + steroid or placebo for the next 24 h. Then, patient-controlled CWI with only ropivacaine 0.2 % or placebo (according to the group of randomization) is planned after 48 h up to 7 days (bolus 10 ml, lock-out 1 h, maximum dose of 40 ml in 4 h). Morphine equivalent consumption up to 7 days will be analyzed, together with any catheter- or drug-related side effect. Persistent post-surgical pain (PPSP) incidence will also be investigated. Our primary endpoint is analgesic consumption in the first 7 days after surgery; we will evaluate, as secondary endpoints, any catheter- or drug-related side effect, genotype/phenotype correlations between some polymorphisms and postoperative outcome in terms of morphine consumption, development of the inflammatory response, and incidence of PPSP. Finally, we will collect, in a subgroup of patients, wound exudate samples by micro-dialysis, blood samples, and urine samples up to 72 h to investigate local and systemic inflammation and oxidative stress. DISCUSSION: This is a phase III trial to evaluate the safety and efficacy of wound infusion with steroid and local anesthetic. The study is aimed also to evaluate how long this infusion has to be maintained in order to maximize effectiveness. Our data are intended to quantify the amount of ropivacaine and methylprednisolone needed by patients undergoing major abdominal surgery, to be stored in a new nanotechnology device for sustained pain treatment after surgery. We also aim to clarify the roles of inflammatory response, oxidative stress, and genetic background on postoperative and persistent pain after major abdominal surgery. TRIAL REGISTRATION: The trial was registered on ClinicalTrials.gov ( NCT02002663 ) on 24 Oct. 2013.


Subject(s)
Abdomen/surgery , Acute Pain/prevention & control , Amides/administration & dosage , Anesthetics, Local/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Inflammation/prevention & control , Methylprednisolone/administration & dosage , Pain, Postoperative/prevention & control , Steroids/administration & dosage , Acute Pain/blood , Acute Pain/diagnosis , Acute Pain/etiology , Acute Pain/genetics , Amides/adverse effects , Analgesics, Opioid/therapeutic use , Anesthetics, Local/adverse effects , Anti-Inflammatory Agents/adverse effects , Biomarkers/blood , Clinical Protocols , Double-Blind Method , Genotype , Humans , Inflammation/blood , Inflammation/diagnosis , Inflammation/etiology , Inflammation/genetics , Inflammation Mediators/blood , Infusions, Parenteral , Italy , Methylprednisolone/adverse effects , Oxidative Stress/drug effects , Pain, Postoperative/blood , Pain, Postoperative/diagnosis , Pain, Postoperative/etiology , Pain, Postoperative/genetics , Phenotype , Prospective Studies , Research Design , Ropivacaine , Steroids/adverse effects , Time Factors , Treatment Outcome
16.
Antioxid Redox Signal ; 21(4): 570-87, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24684653

ABSTRACT

AIMS: Nitric oxide (NO) production is implicated in muscle contraction, growth and atrophy, and in the onset of neuropathy. However, many aspects of the mechanism of action of NO are not yet clarified, mainly regarding its role in muscle wasting. Notably, whether NO production-associated neuromuscular atrophy depends on tyrosine nitration or S-nitrosothiols (SNOs) formation is still a matter of debate. Here, we aim at assessing this issue by characterizing the neuromuscular phenotype of S-nitrosoglutathione reductase-null (GSNOR-KO) mice that maintain the capability to produce NO, but are unable to reduce SNOs. RESULTS: We demonstrate that, without any sign of protein nitration, young GSNOR-KO mice show neuromuscular atrophy due to loss of muscle mass, reduced fiber size, and neuropathic behavior. In particular, GSNOR-KO mice show a significant decrease in nerve axon number, with the myelin sheath appearing disorganized and reduced, leading to a dramatic development of a neuropathic phenotype. Mitochondria appear fragmented and depolarized in GSNOR-KO myofibers and myotubes, conditions that are reverted by N-acetylcysteine treatment. Nevertheless, although atrogene transcription is induced, and bulk autophagy activated, no removal of damaged mitochondria is observed. These events, alongside basal increase of apoptotic markers, contribute to persistence of a neuropathic and myopathic state. INNOVATION: Our study provides the first evidence that GSNOR deficiency, which affects exclusively SNOs reduction without altering nitrotyrosine levels, results in a clinically relevant neuromuscular phenotype. CONCLUSION: These findings provide novel insights into the involvement of GSNOR and S-nitrosylation in neuromuscular atrophy and neuropathic pain that are associated with pathological states; for example, diabetes and cancer.


Subject(s)
Glutathione Reductase/deficiency , Neuromuscular Diseases/genetics , Neuromuscular Diseases/metabolism , AMP-Activated Protein Kinases/metabolism , Alcohol Dehydrogenase , Animals , Apoptosis/genetics , Atrophy , Autophagy/genetics , Forkhead Box Protein O3 , Forkhead Transcription Factors/metabolism , Glutathione Reductase/genetics , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , NF-E2-Related Factor 2/metabolism , Nitric Oxide/metabolism , Oxidation-Reduction , Regeneration/genetics , Tyrosine/metabolism
17.
Mediators Inflamm ; 2013: 950947, 2013.
Article in English | MEDLINE | ID: mdl-23864769

ABSTRACT

Activation of the N-methyl-D-aspartate receptor (NMDAR) is fundamental in the development of hyperalgesia. Overactivation of this receptor releases superoxide and nitric oxide that, in turn, forms peroxynitrite (PN). All of these events have been linked to neurotoxicity. The receptors and enzymes involved in the handling of glutamate pathway--specifically NMDARs, glutamate transporter, and glutamine synthase (GS)--have key tyrosine residues which are targets of the nitration process causing subsequent function modification. Our results demonstrate that the thermal hyperalgesia induced by intrathecal administration of NMDA is associated with spinal nitration of GluN1 and GluN2B receptor subunits, GS, that normally convert glutamate into nontoxic glutamine, and glutamate transporter GLT1. Intrathecal injection of PN decomposition catalyst FeTM-4-PyP(5+) prevents nitration and overall inhibits NMDA-mediated thermal hyperalgesia. Our study supports the hypothesis that nitration of key proteins involved in the regulation of glutamate transmission is a crucial pathway used by PN to mediate the development and maintenance of NMDA-mediated thermal hyperalgesia. The broader implication of our findings reinforces the notion that free radicals may contribute to various forms of pain events and the importance of the development of new pharmacological tool that can modulate the glutamate transmission without blocking its actions directly.


Subject(s)
Glutamic Acid/chemistry , Hyperalgesia/metabolism , N-Methylaspartate/metabolism , Nitrogen/chemistry , Protein Processing, Post-Translational , Tyrosine/chemistry , Animals , Cytosol/metabolism , Glutamine/metabolism , Hot Temperature , Immunoprecipitation , Lumbar Vertebrae/metabolism , Male , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission , Synaptosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...