Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 118(7): 075002, 2017 Feb 17.
Article in English | MEDLINE | ID: mdl-28256868

ABSTRACT

The wake-mediated propulsion of an "extra" particle in a channel of two neighboring rows of a two-dimensional plasma crystal, observed experimentally by Du et al. [Phys. Rev. E 89, 021101(R) (2014)PRESCM1539-375510.1103/PhysRevE.89.021101], is explained in simulations and theory. We use the simple model of a pointlike ion wake charge to reproduce this intriguing effect in simulations, allowing for a detailed investigation and a deeper understanding of the underlying dynamics. We show that the nonreciprocity of the particle interaction, owing to the wake charges, is responsible for a broken symmetry of the channel that enables a persistent self-propelled motion of the extra particle. We find good agreement of the terminal extra-particle velocity with our theoretical considerations and with experiments.

2.
Phys Rev Lett ; 119(25): 255001, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29303297

ABSTRACT

We report an experimental observation of the coupling of the transverse vertical and longitudinal in-plane dust-lattice wave modes in a two-dimensional complex plasma crystal in the absence of mode crossing. A new large-diameter rf plasma chamber was used to suspend the plasma crystal. The observations are confirmed with molecular dynamics simulations. The coupling manifests itself in traces of the transverse vertical mode appearing in the measured longitudinal spectra and vice versa. We calculate the expected ratio of the trace to the principal mode with a theoretical analysis of the modes in a crystal with finite temperature and find good agreement with the experiment and simulations.

3.
Phys Rev E ; 93(1): 013204, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26871180

ABSTRACT

The spectral asymmetry of the wave-energy distribution of dust particles during mode-coupling-induced melting, observed for the first time in plasma crystals by Couëdel et al. [Phys. Rev. E 89, 053108 (2014)PLEEE81539-375510.1103/PhysRevE.89.053108], is studied theoretically and by molecular-dynamics simulations. It is shown that an anisotropy of the well confining the microparticles selects the directions of preferred particle motion. The observed differences in intensity of waves of opposed directions are explained by a nonvanishing phonon flux. Anisotropic phonon scattering by defects and Umklapp scattering are proposed as possible reasons for the mean phonon flux.

4.
Article in English | MEDLINE | ID: mdl-26565155

ABSTRACT

It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.

5.
Article in English | MEDLINE | ID: mdl-25353583

ABSTRACT

Network analysis was used to study the structure and time evolution of driven three-dimensional complex plasma clusters. The clusters were created by suspending micron-size particles in a glass box placed on top of the rf electrode in a capacitively coupled discharge. The particles were highly charged and manipulated by an external electric field that had a constant magnitude and uniformly rotated in the horizontal plane. Depending on the frequency of the applied electric field, the clusters rotated in the direction of the electric field or remained stationary. The positions of all particles were measured using stereoscopic digital in-line holography. The network analysis revealed the interplay between two competing symmetries in the cluster. The rotating cluster was shown to be more cylindrical than the nonrotating cluster. The emergence of vertical strings of particles was also confirmed.

SELECTION OF CITATIONS
SEARCH DETAIL
...