Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Pediatr Res ; 95(1): 93-101, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37087539

ABSTRACT

BACKGROUND: Clinical translation of the extracorporeal artificial placenta (AP) is impeded by the high risk for intracranial hemorrhage in extremely premature newborns. The Nitric Oxide Surface Anticoagulation (NOSA) system is a novel non-thrombogenic extracorporeal circuit. This study aims to test the NOSA system in the AP without systemic anticoagulation. METHODS: Ten extremely premature lambs were delivered and connected to the AP. For the NOSA group, the circuit was coated with DBHD-N2O2/argatroban, 100 ppm nitric oxide was blended into the sweep gas, and no systemic anticoagulation was given. For the Heparin control group, a non-coated circuit was used and systemic anticoagulation was administered. RESULTS: Animals survived 6.8 ± 0.6 days with normal hemodynamics and gas exchange. Neither group had any hemorrhagic or thrombotic complications. ACT (194 ± 53 vs. 261 ± 86 s; p < 0.001) and aPTT (39 ± 7 vs. 69 ± 23 s; p < 0.001) were significantly lower in the NOSA group than the Heparin group. Platelet and leukocyte activation did not differ significantly from baseline in the NOSA group. Methemoglobin was 3.2 ± 1.1% in the NOSA group compared to 1.6 ± 0.6% in the Heparin group (p < 0.001). CONCLUSIONS: The AP with the NOSA system successfully supported extremely premature lambs for 7 days without significant bleeding or thrombosis. IMPACT: The Nitric Oxide Surface Anticoagulation (NOSA) system provides effective circuit-based anticoagulation in a fetal sheep model of the extracorporeal artificial placenta (AP) for 7 days. The NOSA system is the first non-thrombogenic circuit to consistently obviate the need for systemic anticoagulation in an extracorporeal circuit for up to 7 days. The NOSA system may allow the AP to be implemented clinically without systemic anticoagulation, thus greatly reducing the intracranial hemorrhage risk for extremely low gestational age newborns. The NOSA system could potentially be applied to any form of extracorporeal life support to reduce or avoid systemic anticoagulation.


Subject(s)
Extracorporeal Membrane Oxygenation , Premature Birth , Thrombosis , Pregnancy , Humans , Female , Sheep , Animals , Nitric Oxide , Placenta/physiology , Heparin , Hemorrhage/complications , Thrombosis/prevention & control , Anticoagulants/pharmacology , Intracranial Hemorrhages/complications
2.
J Pediatr Surg ; 59(1): 103-108, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37858393

ABSTRACT

BACKGROUND: Children with end-stage lung disease are commonly managed with extracorporeal life support (ECLS) as a bridge to lung transplantation. A pumpless artificial lung (MLung) is a portable alternative to ECLS and it allows for ambulation. Both ECLS and pumpless artificial lungs require systemic anticoagulation which is associated with hemorrhagic complications. We tested the MLung with a novel Nitric Oxide (NO) Surface Anticoagulation (NOSA) system, to provide local anticoagulation for 72 h of support in a pediatric-size ovine model. METHODS: Four mini sheep underwent thoracotomy and cannulation of the pulmonary artery (inflow) and left atrium (outflow), recovered and were monitored for 72hr. The circuit tubing and connectors were coated with the combination of an NO donor (diazeniumdiolated dibutylhexanediamine; DBHD-N2O2) and argatroban. The animals were connected to the MLung and 100 ppm of NO was added to the sweep gas. Systemic hemodynamics, blood chemistry, blood gases, and methemoglobin were collected. RESULTS: Mean device flow was 836 ± 121 mL/min. Device outlet saturation was 97 ± 4%. Pressure drop across the lung was 3.5 ± 1.5 mmHg and resistance was 4.3 ± 1.7 mmHg/L/min. Activated clotting time averaged 170 ± 45s. Methemoglobin was 2.9 ± 0.8%. Platelets declined from 590 ± 101 at baseline to 160 ± 90 at 72 h. NO flux (x10-10 mol/min/cm2) of the NOSA circuit averaged 2.8 ± 0.6 (before study) and 1.9 ± 0.1 (72 h) and across the MLung 18 ± 3 NO flux was delivered. CONCLUSION: The MLung is a more portable form of ECLS that demonstrates effective gas exchange for 72 h without hemodynamic changes. Additionally, the NOSA system successfully maintained local anticoagulation without evidence of systemic effects.


Subject(s)
Extracorporeal Membrane Oxygenation , Nitric Oxide , Animals , Humans , Sheep , Child , Methemoglobin , Lung , Hemodynamics , Anticoagulants/pharmacology , Anticoagulants/therapeutic use
3.
Nitric Oxide ; 142: 38-46, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37979933

ABSTRACT

S-Nitroso-N-acetylpenicillamine (SNAP) is among the most common nitric oxide (NO)-donor molecules and its solid-state photolytic decomposition has potential for inhaled nitric oxide (iNO) therapy. The photochemical NO release kinetics and mechanism were investigated by exposing solid-state SNAP to a narrow-band LED as a function of nominal wavelength and intensity of incident light. The photolytic efficiency, decomposition products, and the photolytic pathways of the SNAP were examined. The maximum light penetration depth through the solid layer of SNAP was determined by an optical microscope and found to be within 100-200 µm, depending on the wavelength of light. The photolysis of solid-state SNAP to generate NO along with the stable thiyl (RS·) radical was confirmed using Electron Spin Resonance (ESR) spectroscopy. The fate of the RS· radical in the solid phase was studied both in the presence and absence of O2 using NMR, IR, ESR, and UPLC-MS. The changes in the morphology of SNAP due to its photolysis were examined using PXRD and SEM. The stable thiyl radical formed from the photolysis of solid SNAP was found to be reactive with another adjacent thiyl radical to form a disulfide (RSSR) or with oxygen to form various sulfonyl and sulfonyl peroxyl radicals {RS(O)xO·, x = 0 to 7}. However, the thiyl radical did not recombine with NO to reform the SNAP. From the PXRD data, it was found that the SNAP loses its crystallinity by generating the NO after photolysis. The initial release of NO during photolysis was increased with increased intensity of light, whereas the maximum light penetration depth was unaffected by light intensity. The knowledge gained about the photochemical reactions of SNAP may provide important insight in designing portable photoinduced NO-releasing devices for iNO therapy.


Subject(s)
Nitric Oxide , Tandem Mass Spectrometry , S-Nitroso-N-Acetylpenicillamine/pharmacology , Nitric Oxide/metabolism , Photolysis , Chromatography, Liquid , Nitric Oxide Donors/chemistry , Oxygen
4.
J Pediatr Surg ; 57(1): 26-33, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34649727

ABSTRACT

BACKGROUND: Artificial lungs have the potential to serve as a bridge to transplantation or recovery for children with end-stage lung disease dependent on extracorporeal life support, but such devices currently require systemic anticoagulation. We describe our experience using the novel Nitric Oxide (NO) Surface Anticoagulation (NOSA) system-an NO-releasing circuit with NO in the sweep gas-with the Pediatric MLung-a low-resistance, pumpless artificial lung. METHODS: NO flux testing: MLungs (n = 4) were tested using veno-venous extracorporeal life support in a sheep under anesthesia with blood flow set to 0.5 and 1 L/min and sweep gas blended with 100 ppm NO at 1, 2, and 4 L/min. NO and NO2 were measured in the sweep and exhaust gas to calculate NO flux across the MLung membrane. Pumpless implants: Sheep (20-100 kg, n = 3) underwent thoracotomy and cannulation via the pulmonary artery (device inflow) and left atrium (device outflow) using cannulae and circuit components coated with an NO donor (diazeniumdiolated dibutylhexanediamine; DBHD-N2O2) and argatroban. Animals were connected to the MLung with 100 ppm NO in the sweep gas under anesthesia for 24 h with no systemic anticoagulation after cannulation. RESULTS: NO flux testing: NO flux averaged 3.4 ± 1.0 flux units (x10-10 mol/cm2/min) (human vascular endothelium: 0.5-4 flux units). Pumpless implants: 3 sheep survived 24 h with patent circuits. MLung blood flow was 716 ± 227 mL/min. Outlet oxygen saturation was 98.3 ± 2.6%. Activated clotting time was 151±24 s. Platelet count declined from 334,333 ± 112,225 to 123,667 ± 7,637 over 24 h. Plasma free hemoglobin and leukocyte and platelet activation did not significantly change. CONCLUSIONS: The NOSA system provides NO flux across a gas-exchange membrane of a pumpless artificial lung at a similar rate as native vascular endothelium and achieves effective local anticoagulation of an artificial lung circuit for 24 h.


Subject(s)
Extracorporeal Membrane Oxygenation , Nitric Oxide , Animals , Anticoagulants , Child , Humans , Lung , Oxygen Saturation , Sheep
5.
ASAIO J ; 66(7): 818-824, 2020 07.
Article in English | MEDLINE | ID: mdl-31425266

ABSTRACT

Cardiopulmonary bypass causes a systemic inflammatory response reaction that may contribute to postoperative complications. One cause relates to the air/blood interface from the extracorporeal circuit. The modulatory effects of blending nitric oxide (NO) gas into the ventilation/sweep gas of the membrane lung was studied in a porcine model of air-induced inflammation in which NO gas was added and compared with controls with or without an air/blood interface. Healthy swine were supported on partial bypass under four different test conditions. Group 1: no air exposure, group 2: air alone, group 3: air plus 50 ppm NO, and group 4: air plus 500 ppm NO. The NO gas was blended into the ventilation/sweep site of the membrane lung. The platelets and leucocytes were activated by air alone. Addition of NO to the sweep gas attenuated the inflammatory response created by the air/blood interface in this model.


Subject(s)
Blood Platelets/drug effects , Cardiopulmonary Bypass/adverse effects , Cardiopulmonary Bypass/methods , Nitric Oxide/pharmacology , Animals , Humans , Inflammation/etiology , Swine
6.
ASAIO J ; 66(7): 796-802, 2020 07.
Article in English | MEDLINE | ID: mdl-31577624

ABSTRACT

The modalities of vascular access for the extracorporeal artificial placenta (AP) have undergone many iterations over the past decade. We hypothesized that single lumen cannulation (SLC) of the jugular vein using tidal flow extracorporeal life (ECLS) support is a feasible alternative to venovenous (VV) umbilical-jugular cannulation and double lumen cannulation (DLC) and can maintain fetal circulation, stable hemodynamics, and adequate gas exchange for 24 hours. After in vitro evaluation of the tidal flow system, six preterm lambs at estimated gestational age 118-124 days (term 145 days) were delivered and underwent VV-ECLS. Three were supported using DLC and three with SLC utilizing tidal flow AP support. Hemodynamics, circuit flow, and gas exchange were monitored. Target fetal parameters were as follows: mean arterial pressure 40-60 mmHg, heart rate 140-240 beats per minute (bpm), SatO2% 60-80%, PaO2 25-50 mmHg, PaCO2 30-55 mmHg, oxygen delivery >5 ml O2/dl/kg/min, and circuit flow 100 ± 25 ml/kg/min. All animals survived 24 hours and maintained fetal circulation with stable hemodynamics and adequate gas exchange. Parameters of the tidal flow group were comparable with those of DLC. Single lumen jugular cannulation using tidal flow is a promising vascular access strategy for AP support. Successful miniaturization holds great potential for clinical translation to support extremely premature infants.


Subject(s)
Artificial Organs , Extracorporeal Circulation/methods , Placenta , Animals , Animals, Newborn , Extracorporeal Circulation/instrumentation , Female , Fetus , Hemodynamics/physiology , Perfusion/instrumentation , Perfusion/methods , Pregnancy , Sheep , Sheep, Domestic
7.
J Control Release ; 318: 264-269, 2020 02.
Article in English | MEDLINE | ID: mdl-31778741

ABSTRACT

Constant therapeutic gas phase nitric oxide (NO) delivery is achieved from S-nitrosothiol (RSNO) type NO donor doped silicone rubber films using feedback-controlled photolysis. For photo-release of the NO gas, the intensity of the LED light source is controlled via a PID (proportional-integral-derivative) controller implemented on a microcontroller. The NO concentration within the emitted gas phase is monitored continuously with a commercial amperometric NO gas sensor. NO release was accurately adjustable up to 10 ppm across a broad range of setpoints with response times of roughly 1 min or less. When NO is generated into an air recipient stream, lower NO yields and a comparable level of toxic nitrogen dioxide (NO2) formation is observed. However, NO gas generated into an N2 recipient gas stream can be blended into pure O2 with very low NO2 formation. Following scale-up, this technology could be used for point-of-care gas phase NO generation as an alternative for currently used gas cylinder technology for treatment of health conditions where inhaled NO is beneficial, such as pulmonary hypertension, hypoxemia, and cystic fibrosis.


Subject(s)
Nitric Oxide , S-Nitrosothiols , Feedback , Photolysis , Silicone Elastomers
8.
Nitric Oxide ; 86: 31-37, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30735785

ABSTRACT

The light induced nitric oxide (NO) release properties of S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO) NO donors doped within polydimethylsiloxane (PDMS) films (PDMS-SNAP and PDMS-GSNO respectively) for potential inhaled NO (iNO) applications is examined. To achieve photolytic release of gas phase NO from the PDMS-SNAP and PDMS-GSNO films, narrow-band LED light sources are employed and the NO concentration in a N2 sweep gas above the film is monitored with an electrochemical NO sensor. The NO release kinetics using LED sources with different nominal wavelengths and optical power densities are reported. The effect of the NO donor loading within the PDMS films is also examined. The NO release levels can be controlled by the LED triggered release from the NO donor-doped silicone rubber films in order to generate therapeutic levels in a sweep gas for suitable durations potentially useful for iNO therapy. Hence this work may lay the groundwork for future development of a highly portable iNO system for treatment of patients with pulmonary hypertension, hypoxemia, and cystic fibrosis.


Subject(s)
Drug Carriers/chemistry , Nitric Oxide Donors/chemistry , Nitric Oxide/chemistry , S-Nitroso-N-Acetylpenicillamine/chemistry , S-Nitrosoglutathione/chemistry , Silicones/chemistry , Drug Liberation , Gases/chemistry , Kinetics , Membranes, Artificial , Nitric Oxide Donors/radiation effects , S-Nitroso-N-Acetylpenicillamine/radiation effects , S-Nitrosoglutathione/radiation effects , Ultraviolet Rays
9.
Anal Chim Acta ; 960: 131-137, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28193356

ABSTRACT

Mimicking the molecular recognition functionality of antibodies is a great challenge. Foldamers are attractive candidates because of their relatively small size and designable interaction surface. This paper describes a sandwich type enzyme-linked immunoassay with a tetravalent ß-peptide foldamer helix array as capture element and enzyme labeled tracer antibodies. The assay was found to be selective to ß-amyloid oligomeric species with surface features transiently present in ongoing aggregation. In optimized conditions, with special emphasis on the foldamer immobilization, a detection limit of 5 pM was achieved with a linear range of 10-500 pM. These results suggest that protein mimetic foldamers can be useful tools in biosensors and affinity assays.


Subject(s)
Amyloid beta-Peptides/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Protein Multimerization , Amino Acid Sequence , Models, Molecular , Protein Aggregates , Protein Conformation, alpha-Helical , Protein Structure, Secondary , Time Factors
10.
J Control Release ; 225: 133-9, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26763376

ABSTRACT

Nitric oxide (NO) is a fascinating and important endogenous free-radical gas with potent antimicrobial, vasodilating, smooth muscle relaxant, and growth factor stimulating effects. However, its wider biomedical applicability is hindered by its cumbersome administration, since NO is unstable especially in biological environments. In this work, to ultimately develop site-specific controlled release vehicles for NO, the NO donor S-nitroso-N-acetyl-D-penicillamine (SNAP) was encapsulated within poly(lactic-co-glycolic acid) 50:50 (PLGA) microspheres by using a solid-in-oil-in-water emulsion solvent evaporation method. The highest payload was 0.56(±0.01) µmol SNAP/mg microspheres. The in vitro release kinetics of the donor were controlled by the bioerosion of the PLGA microspheres. By using an uncapped PLGA (Mw=24,000-38,000) SNAP was slowly released for over 10days, whereas by using the ester capped PLGA (Mw=38,000-54,000) the release lasted for over 4weeks. The presence of copper ions and/or ascorbate in solution was necessary to efficiently decompose the released NO donor and obtain sustained NO release. It was also demonstrated that light can be used to induce rapid NO release from the microspheres over several hours. SNAP exhibited excellent storage stability when encapsulated in the PLGA microspheres. These new microsphere formulations may be useful for site-specific administration and treatment of pathologies associated with dysfunction in endogenous NO production, e.g. treatment of diabetic wounds, or in diseases involving other biological functions of NO including vasodilation, antimicrobial, anticancer, and neurotransmission.


Subject(s)
Drug Delivery Systems , Lactic Acid/chemistry , Nitric Oxide Donors/chemistry , Polyglycolic Acid/chemistry , S-Nitroso-N-Acetylpenicillamine/chemistry , Delayed-Action Preparations/chemistry , Microspheres , Nitric Oxide/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer
11.
Biosens Bioelectron ; 73: 123-129, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26056955

ABSTRACT

Here we introduce microelectrospotting as a new approach for preparation of protein-selective molecularly imprinted polymer microarrays on bare gold SPR imaging chips. During electrospotting both the gold chip and the spotting tip are electrically connected to a potentiostat as working and counter electrodes, respectively. The spotting pin encloses the monomer-template protein cocktail that upon contacting the gold surface is in-situ electropolymerized resulting in surface confined polymer spots of ca. 500 µm diameter. By repeating this procedure at preprogrammed locations for various composition monomer-template mixtures microarrays of nanometer-thin surface-imprinted films are generated in a controlled manner. We show that the removal and rebinding kinetics of the template and various potential interferents to such microarrays can be monitored in real-time and multiplexed manner by SPR imaging. The proof of principle for microelectrospotting of electrically insulating surface-imprinted films is made by using scopoletin as monomer and ferritin as protein template. It is shown that microelectrospotting in combination with SPR imaging can offer a versatile platform for label-free and enhanced throughput optimization of the molecularly imprinted polymers for protein recognition and for their analytical application.


Subject(s)
Molecular Imprinting/methods , Protein Array Analysis/methods , Animals , Cattle , Electrochemical Techniques , Ferritins/chemistry , Gold , Microscopy, Atomic Force , Polymers/chemistry , Protein Array Analysis/instrumentation , Scopoletin/chemistry , Serum Albumin, Bovine/chemistry , Surface Plasmon Resonance/instrumentation
12.
Chem Commun (Camb) ; 50(51): 6801-4, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24836380

ABSTRACT

We report the first protein selective Spiegelmers of diagnostic relevance by rational identification of a target epitope and reverse screening of Spiegelmer candidates following the selection procedure. Application of the presented approach resulted in isolation of cardiac troponin I selective Spiegelmers with low nanomolar dissociation constant and functionality in serum.


Subject(s)
Aptamers, Peptide/chemistry , Troponin I/chemistry , Biomarkers/analysis , Cardiomyopathies/metabolism , Epitopes , Humans , Indicators and Reagents , Kinetics , Muramidase/chemistry , Protein Binding
13.
Analyst ; 137(17): 3929-31, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22805733

ABSTRACT

We introduce Amplified Luminescent Proximity Homogenous Assay (ALPHA) to assess the K(D) value of aptamer-protein complexes as demonstrated through the study of apple stem pitting virus coat protein-specific aptamers. This method can be used as a simple, cost-effective method for screening aptamer-target protein interactions during aptamer selection.


Subject(s)
Aptamers, Nucleotide/metabolism , Capsid Proteins/metabolism , Surface Plasmon Resonance , Aptamers, Nucleotide/chemistry , Capsid Proteins/chemistry , Histidine/chemistry , Kinetics , Oligopeptides/chemistry , Protein Binding
14.
FASEB J ; 24(11): 4187-95, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20624933

ABSTRACT

Although the significance of molecular diagnostics in routine plant virus detection is rapidly growing, the preferred methods are still antibody-based enzyme immunoassays. In the past decade, aptamers have been demonstrated to be viable alternatives of antibodies in many applications. We set out to select apple stem pitting virus (ASPV)-specific aptamers and to apply them as antibody substitutes in various immunoassay methods. The applied systematic evolution of ligands by exponential enrichment (SELEX) procedure resulted in highly discriminative aptamers selectively binding to the target virus coat protein even in complex protein matrixes. We developed protocols for exploitation of aptamers in diverse plant virus diagnosis methods, such as dot and Western blot analyses and enzyme-linked oligonucleotide assay (ELONA). Our selected aptamers proved to be superior to the available antibody in all aspects. In contrast to the antibody, the aptamers decorate both native and denaturated proteins, and ELONA produces higher signal intensity than traditional enzyme-linked immunosorbent assay (ELISA) with virus-infected plant extract. Summarily, our results present the selection and practical utilization of first plant virus-specific aptamers. Most important, the first application of ELONA for virus detection is demonstrated, which proposes a novel, more flexible, and cost-effective means of virus diagnostics.


Subject(s)
Aptamers, Nucleotide/isolation & purification , Aptamers, Nucleotide/metabolism , Capsid Proteins/chemistry , Flexiviridae/genetics , Flexiviridae/isolation & purification , Immunoassay/methods , Aptamers, Nucleotide/chemistry , Capsid Proteins/genetics , Protein Binding , Sensitivity and Specificity
15.
Analyst ; 135(5): 918-26, 2010 May.
Article in English | MEDLINE | ID: mdl-20419239

ABSTRACT

Specific detection of virus strains by affinity-based bioassays is often limited by the availability of ligands able to differentiate among close homologues of virus coat proteins. As viruses are prone to mutation, the ligand generation should, in addition, be fast enough to allow rapid identification of new varieties. These two criteria are difficult to be fulfilled by antibodies; however, they open up opportunities for aptamer-based detection. Here we report on the feasibility of selectively detecting the apple stem pitting virus (ASPV) coat proteins (PSA-H, MT32) using original DNA aptamers. Surface plasmon resonance (SPR) imaging was used together with aptamer-modified sensor chips to optimize the aptamer immobilization for highest sensitivity and to characterize the aptamer-virus coat protein binding. Different parameters affecting this binding, such as the aptamer flanking, surface coverage, and type of spacer molecules, were identified and their influence was determined. A direct label-free method is proposed for assessing the ASPV based on the detection of the respective virus coat proteins in plant extracts.


Subject(s)
Aptamers, Nucleotide/chemistry , Capsid Proteins/analysis , Protein Array Analysis/methods , Surface Plasmon Resonance/methods , Capsid Proteins/chemistry , Malus/virology , Plant Viruses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...