Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Biotechnol J ; 19(5): e2400090, 2024 May.
Article in English | MEDLINE | ID: mdl-38719592

ABSTRACT

The production of lentiviral vectors (LVs) pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G) is limited by the associated cytotoxicity of the envelope and by the production methods used, such as transient transfection of adherent cell lines. In this study, we established stable suspension producer cell lines for scalable and serum-free LV production derived from two stable, inducible packaging cell lines, named GPRG and GPRTG. The established polyclonal producer cell lines produce self-inactivating (SIN) LVs carrying a WAS-T2A-GFP construct at an average infectious titer of up to 4.64 × 107 TU mL-1 in a semi-perfusion process in a shake flask and can be generated in less than two months. The derived monoclonal cell lines are functionally stable in continuous culture and produce an average infectious titer of up to 9.38 × 107 TU mL-1 in a semi-perfusion shake flask process. The producer clones are able to maintain a productivity of >1 × 107 TU mL-1 day-1 for up to 29 consecutive days in a non-optimized 5 L stirred-tank bioreactor perfusion process, representing a major milestone in the field of LV manufacturing. As the producer cell lines are based on an inducible Tet-off expression system, the established process allows LV production in the absence of inducers such as antibiotics. The purified LVs efficiently transduce human CD34+ cells, reducing the LV quantities required for gene and cell therapy applications.


Subject(s)
Bioreactors , Genetic Vectors , Lentivirus , Lentivirus/genetics , Humans , Genetic Vectors/genetics , Culture Media, Serum-Free , Cell Line , Cell Culture Techniques/methods , Virus Cultivation/methods , HEK293 Cells , Transfection/methods
2.
Biotechnol J ; 19(3): e2300348, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472091

ABSTRACT

The development and manufacture of biopharmaceuticals are subject to strict regulations that specify the required minimum quality of the products. A key measure to meet these quality requirements is the integration of a sterile filtration step into the commercial manufacturing process. Whereas common procedures for most biologics exist, this is challenging for lentiviral vector (LVV) production for ex vivo gene therapy. LVVs nominal size is more than half the pore size (0.2 µm) of filters used for sterile filtration. Hence, highly concentrated virus solutions are prone to filter clogging if aggregation of viruses occurs or impurities attach to the viruses. Several filters were screened aiming to identify those which allow filtering highly concentrated stocks of LVVs of up to 1E + 9 transducing units mL-1 , which corresponds to 4.5E + 12 particles mL-1 . In addition, the effect of endonuclease treatment upstream of the purification process on filter performance was studied. In summary, three suitable filters were identified in a small-scale study (<15 mL) with virus yields >80% and the process was successfully scaled-up to a final scale of 100 mL LVV stock solution.


Subject(s)
Lentivirus , Viruses , Lentivirus/genetics , Viruses/genetics , Filtration/methods , Genetic Therapy
3.
Biotechnol Bioeng ; 120(9): 2622-2638, 2023 09.
Article in English | MEDLINE | ID: mdl-37148430

ABSTRACT

The large-scale production of clinical-grade lentiviral vectors (LVs) for gene therapy applications is a remaining challenge. The use of adherent cell lines and methods like transient transfection are cost-intensive and hamper process scalability as well as reproducibility. This study describes the use of two suspension-adapted stable packaging cell lines, called GPRGs and GPRTGs, for the development of a scalable and serum-free LV production process. Both stable packaging cell lines are based on an inducible Tet-off system, thus requiring doxycycline removal for initiation of the virus production. Therefore, we compared different methods for doxycycline removal and inoculated three independent 5 L bioreactors using a scalable induction method by dilution, an acoustic cell washer and manual centrifugation. The bioreactors were inoculated with a stable producer cell line encoding for a LV carrying a clinically relevant gene. LV production was performed in perfusion mode using a cell retention device based on acoustic wave separation. Comparable cell-specific productivities were obtained with all three methods and cumulative functional yields up to 6.36 × 1011 transducing units per bioreactor were generated in a 234-h long process, demonstrating the usability of stable Tet-off cell lines for an easily scalable suspension process. Remarkably, cell viabilities >90% were maintained at high cell densities without compromising productivity throughout the whole process, allowing to further extend the process time. Given its low effects of toxicity during virus production, the presented cell lines are excellent candidates to develop a fully continuous LV production process to overcome the existing bottlenecks in LV manufacturing.


Subject(s)
Genetic Vectors , Lentivirus , Lentivirus/genetics , Doxycycline/pharmacology , Cell Culture Techniques/methods , Reproducibility of Results , Cell Line , Perfusion
4.
Biotechnol J ; 14(7): e1800371, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30793505

ABSTRACT

Early analytical clone screening is important during Chinese hamster ovary (CHO) cell line development of biotherapeutic proteins to select a clonally derived cell line with most favorable stability and product quality. Sensitive sequence confirmation methods using mass spectrometry have limitations in throughput and turnaround time. Next-generation sequencing (NGS) technologies emerged as alternatives for CHO clone analytics. We report an efficient NGS workflow applying the targeted locus amplification (TLA) strategy for genomic screening of antibody expressing CHO clones. In contrast to previously reported RNA sequencing approaches, TLA allows for targeted sequencing of genomic integrated transgenic DNA without prior locus information, robust detection of single-nucleotide variants (SNVs) and transgenic rearrangements. During clone selection, TLA/NGS revealed CHO clones with high-level SNVs within the antibody gene and we report in another case the utility of TLA/NGS to identify rearrangements at transgenic DNA level. We also determined detection limits for SNVs calling and the potential to identify clone contaminations by TLA/NGS. TLA/NGS also allows to identify genetically identical clones. In summary, we demonstrate that TLA/NGS is a robust screening method useful for routine clone analytics during cell line development with the potential to process up to 24 CHO clones in less than 7 workdays.


Subject(s)
DNA, Recombinant , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Animals , CHO Cells , Cricetinae , Cricetulus , DNA, Recombinant/classification , DNA, Recombinant/genetics
5.
Biotechnol Bioeng ; 115(10): 2530-2540, 2018 10.
Article in English | MEDLINE | ID: mdl-29777593

ABSTRACT

An increasing number of nonantibody format proteins are entering clinical development. However, one of the major hurdles for the production of nonantibody glycoproteins is host cell-related proteolytic degradation, which can drastically impact developability and timelines of pipeline projects. Chinese hamster ovary (CHO) cells are the preferred production host for recombinant therapeutic proteins. Using protease inhibitors, transcriptomics, and genetic knockdowns, we have identified, out of the >700 known proteases in rodents, matriptase-1 as the major protease involved in the degradation of recombinant proteins expressed in CHO-K1 cells. Subsequently, matriptase-1 was deleted in CHO-K1 cells using "transcription activator-like effector nucleases" (TALENs) as well as zinc-finger nucleases (ZFNs). This resulted in a superior CHO-K1 matriptase (KO) cell line with strongly reduced or no proteolytic degradation activity toward a panel of recombinantly expressed proteins. The matriptase KO cell line was evaluated in spike-in experiments and showed little or no degradation of proteins incubated in culture supernatant derived from the KO cells. This effect was confirmed when the same proteins were recombinantly expressed in the KO cell line. In summary, the combination of novel cell line engineering tools, next-generation sequencing screening methods, and the recently published Chinese hamster genome has enabled the development of this novel matriptase KO CHO cell line capable of improving expression yields of intact therapeutic proteins.


Subject(s)
Cell Engineering/methods , Gene Knockdown Techniques/methods , Proteolysis , Serine Endopeptidases/genetics , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Serine Endopeptidases/metabolism
6.
Biotechnol Bioeng ; 114(3): 701-704, 2017 03.
Article in English | MEDLINE | ID: mdl-27617904

ABSTRACT

Recombinant CHO (Chinese hamster ovary) cell lines producing therapeutic proteins often lose their production capability during long-term cultivation. To ensure that CHO production cell lines can be up-scaled to high-volume bioreactors, labor intensive stability studies of several months have to be performed to deselect clones that are losing productivity over time. The ability to predict whether clones will produce recombinant proteins at constant high levels, for example, through determination of biomarkers such as expression of specific genes, plasmid integration sites, or epigenetic patterns, or even to improve CHO host cell lines to increase the probability of the generation of stable clones would be highly beneficial. Previously, we reported that the lack of a telomeric region of chromosome 8 correlates with increased productivities and higher production stabilities of monoclonal antibody expressing CHO cell lines (Ritter A, Voedisch B, Wienberg J, Wilms B, Geisse S, Jostock T, Laux H. 2016a. Biotechnol Bioeng 113(5):1084-1093). Herein, we describe that the knock-out of the gene Fam60A, which is one of the genes located within the telomeric region of chromosome 8, in CHO-K1a cells leads to the isolation of significantly more clones with higher protein production stabilities of monoclonal antibodies during long-term cultivation. Biotechnol. Bioeng. 2017;114: 701-704. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cell Engineering/methods , DNA-Binding Proteins/physiology , Recombinant Proteins/metabolism , Acetylation , Animals , Bioreactors , CHO Cells , Cricetinae , Cricetulus , DNA-Binding Proteins/genetics , Gene Knockout Techniques , Histones , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
7.
Biotechnol Bioeng ; 113(11): 2433-42, 2016 11.
Article in English | MEDLINE | ID: mdl-27183150

ABSTRACT

Recently, we reported that the loss of a telomeric region of chromosome 8 in Chinese Hamster Ovary (CHO) cells correlates with higher recombinant productivities. New cell lines lacking this region, called CHO-C8DEL, showed several advantages during cell line generation and for the production of recombinant proteins (Ritter et al., 2016, Biotechnol Bioeng). Here, we performed knock-down and knock-out experiments of genes located within this telomeric region of chromosome 8 to identify the genes causing the observed phenotypes of CHO-C8DEL cell lines. We present evidence that loss or reduced expression of the gene C12orf35 is responsible for higher productivities and shorter recovery times during selection pressure. These effects are mediated by increased levels of mRNA of the exogenes heavy chain (HC) and light chain (LC) as well as dihydrofolate reductase (DHFR) and neomycin phosphotransferase (Neo) during the stable expression of antibodies. Biotechnol. Bioeng. 2016;113: 2433-2442. © 2016 Wiley Periodicals, Inc.


Subject(s)
CHO Cells/physiology , Genetic Enhancement/methods , Recombinant Proteins/biosynthesis , Animals , CHO Cells/cytology , Cricetulus , Gene Knockdown Techniques , Recombinant Proteins/genetics , Up-Regulation/genetics
8.
Biotechnol Bioeng ; 113(5): 1084-93, 2016 May.
Article in English | MEDLINE | ID: mdl-26523402

ABSTRACT

Chinese Hamster Ovary (CHO) cells are widely used for large scale production of recombinant biopharmaceuticals. Although these cells have been extensively used, a demand to further increase the performance, for example, to facilitate the process of clone selection to isolate the highest producing cell lines that maintain stability of production over time is still existing. We compared gene expression profiles of high versus low producing CHO clones to identify regulated genes which can be used as biomarkers during clone selection or for cell line engineering. We present evidence that increased production rates and cell line stability are correlated with the loss of the telomeric region of the chromosome 8. A new parental CHO cell line lacking this region was generated and its capability for protein production was assessed. The average volumetric productivity of cells after gene transfer and selection was found to be several fold improved, facilitating the supply of early drug substance material to determine for example, quality. In addition, significantly more cell clones with a higher average productivity and higher protein production stability were obtained with the new host cell line after single cell cloning. This allows reduced efforts in single cell sorting, screening of fewer clones and raises the opportunity to circumvent time and labor-intensive stability studies.


Subject(s)
CHO Cells/metabolism , Chromosomes, Human, Pair 8/genetics , Telomere/genetics , Animals , Antibodies, Monoclonal/genetics , CHO Cells/cytology , Chromosome Deletion , Clone Cells/cytology , Clone Cells/metabolism , Cricetinae , Cricetulus , Down-Regulation , Gene Expression Regulation , Genetic Engineering/methods , Humans , Recombinant Proteins/genetics , Transcriptome , Transfection
9.
Biotechnol Bioeng ; 113(5): 1094-101, 2016 May.
Article in English | MEDLINE | ID: mdl-26523469

ABSTRACT

Chinese Hamster Ovary (CHO) cells are widely used for the large-scale production of recombinant biopharmaceuticals. However, attempts to express IGF-1 (a mutated human Insulin-like growth factor 1 Ea peptide (hIGF-1Ea mut)) in CHO cells resulted in poor cell growth and low productivity (0.1-0.2 g/L). Human IGF-1 variants negatively impacted CHO cell growth via the IGF-1 receptor (IGF-1R). Therefore knockout (KO) of the IGF-1R gene in two different CHO cell lines as well as knockdown (KD) of IGF-1R in one CHO cell line were performed. These cell line engineering approaches decreased significantly the hIGF-1 mediated cell growth inhibition and increased productivity of both KO CHO cell lines as well as of the KD CHO cell line. A productivity increase of 10-fold at pool level and sevenfold at clone level was achieved, resulting in a titer of 1.3 g/L. This data illustrate that cell line engineering approaches are powerful tools to improve the yields of recombinant proteins which are difficult to produce in CHO cells.


Subject(s)
CHO Cells/metabolism , Gene Knockout Techniques , Genetic Engineering/methods , Insulin-Like Growth Factor I/genetics , Receptor, IGF Type 1/genetics , Animals , CHO Cells/cytology , Cell Proliferation , Cricetinae , Cricetulus , Gene Expression , Gene Knockdown Techniques/methods , Humans , Recombinant Proteins/genetics
10.
BMC Biotechnol ; 15: 98, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26499110

ABSTRACT

BACKGROUND: Chinese hamster ovary (CHO) cells have become the host of choice for the production of recombinant proteins, due to their capacity for correct protein folding, assembly, and posttranslational modifications. The most widely used system for recombinant proteins is the gene amplification procedure that uses the CHO-Dhfr expression system. However, CHO cells are known to have a very unstable karyotype. This is due to chromosome rearrangements that can arise from translocations and homologous recombination, especially when cells with the CHO-Dhfr expression system are treated with methotrexate hydrate. The present method used in the industry for testing clones for their long-term stability of recombinant protein production is empirical, and it involves their cultivation over extended periods of time prior to the selection of the most suitable clone for further bioprocess development. The aim of the present study was the identification of marker genes that can predict stable expression of recombinant genes in particular clones early in the development stage. RESULTS: The transcriptome profiles of CHO clones with stable and unstable recombinant protein production were investigated over 10-weeks of cultivation, using a DNA microarray. We identified 14 genes that were differentially expressed between the stable and unstable clones already at 2 weeks from the beginning of the cultivation. Their expression was validated by reverse-transcription quantitative real-time PCR (RT-qPCR). Furthermore, the k-nearest neighbour algorithm approach shows that the combination of the gene expression patterns of only five of these 14 genes is sufficient to predict stable recombinant protein production in clones in the early phases of cell-line development. CONCLUSIONS: The exact molecular mechanisms that cause unstable recombinant protein production are not fully understood. However, the expression profiles of some genes in clones with stable and unstable recombinant protein production allow prediction of such instability early in the cell-line development stage. We have thus developed a proof-of-concept for a novel approach to eliminate unstable clones in the CHO-Dhfr expression system, which saves time and labour-intensive work in cell-line development.


Subject(s)
Gene Expression Profiling/methods , Genetic Markers/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcriptome/genetics , Animals , CHO Cells , Cricetinae , Cricetulus , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction
11.
Biotechnol Bioeng ; 112(12): 2505-15, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26058896

ABSTRACT

Human cytomegalovirus (HCMV) causes significant disease worldwide. Multiple HCMV vaccines have been tested in man but only partial protection has been achieved. The HCMV gH/gL/UL128/UL130/UL131A complex (Pentamer) is the main target of neutralizing antibodies in HCMV seropositive individuals and raises high titers of neutralizing antibodies in small animals and non-human primates (NHP). Thus, Pentamer is a promising candidate for an effective HCMV vaccine. Development of a Pentamer-based subunit vaccine requires expression of high amounts of a functional and stable complex. We describe here the development of a mammalian expression system for large scale Pentamer production. Several approaches comprising three different CHO-originated cell lines and multiple vector as well as selection strategies were tested. Stable cell pools expressed the HCMV Pentamer at a titer of approximately 60 mg/L at laboratory scale. A FACS-based single cell sorting approach allowed selection of a highly expressing clone producing Pentamer at the level of approximately 400 mg/L in a laboratory scale fed-batch culture. Expression in a 50 L bioreactor led to the production of HCMV Pentamer at comparable titers indicating the feasibility of further scale-up for manufacturing at commercial scale. The CHO-produced HCMV Pentamer bound to a panel of human neutralizing antibodies and raised potently neutralizing immune response in mice. Thus, we have generated an expression system for the large scale production of functional HCMV Pentamer at high titers suitable for future subunit vaccine production.


Subject(s)
CHO Cells , Cytomegalovirus Vaccines/immunology , Gene Expression , Viral Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cricetulus , Cytomegalovirus/genetics , Cytomegalovirus Vaccines/administration & dosage , Cytomegalovirus Vaccines/genetics , Cytomegalovirus Vaccines/metabolism , Mice , Protein Multimerization , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Subunit/metabolism , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
13.
Mol Biol Rep ; 37(4): 1801-14, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19597962

ABSTRACT

Thalidomide and lenalidomide are FDA approved for the treatment of multiple myeloma, and along with pomalidomide are being investigated in a variety of other cancers. Although these agents display immunomodulatory, anti-angiogenic and anti-apoptotic effects, little is known about the primary mode of therapeutic action in patients with cancer. This paper describes a microarray study of the in vitro and in vivo effects of these drugs, and contrasts the difference in gene profiles achieved in the two models. In the current study, Agilent whole mouse genome oligonucleotide microarrays (44 K) were used to examine alterations in gene expression of colorectal cancer cells after treatment. Venn analysis revealed a divergence of gene signature for pomalidomide and lenalidomide, which although similar in vitro, different in vivo. Several clusters of genes involved in various cellular processes such as immune response, cell signalling and cell adhesion were altered by treatment, and common to the three drugs. Notably, the expressions of linked genes within the Notch/Wnt signalling pathway, including kremen2 and dtx4, highlighted a possible novel mechanistic pathway for these drugs. This study also showed that gene signatures were not greatly divergent in the models, and recapitulated the complex nature of these drugs. Overall, these microarray studies highlighted the diversity of this class of drug, which have effects ranging from cell signalling to translation initiation.


Subject(s)
Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Immunologic Factors/therapeutic use , Oligonucleotide Array Sequence Analysis , Animals , Biomarkers/metabolism , Blotting, Western , Cell Line, Tumor , Cluster Analysis , Female , Genes, Neoplasm/genetics , Immunologic Factors/pharmacology , Lenalidomide , Lymphocytes/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Quality Control , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Thalidomide/therapeutic use
14.
J Cell Mol Med ; 13(9B): 3858-67, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19604315

ABSTRACT

Reduced E-cadherin expression is associated with tumour progression of many carcinomas, including endometrial cancers. The transcription factor Snail is known as one of the most prominent transcriptional E-cadherin repressors; its regulation in cancer tissues, however, still remains unclear. Here, we report that activation of epidermal growth factor receptor (EGFR) resulted in overexpression of Snail and also identified critical downstream signalling molecules. Stimulation of two endometrial carcinoma cell lines with epidermal growth factor (EGF) lead to an increase of Snail protein expression. In primary human endometrioid endometrial carcinomas Snail protein expression correlated with the activated, phosphorylated form of EGFR (Tyr1086) as revealed by profiling 24 different signalling proteins using protein lysate microarrays. In addition, we observed an inverse correlation between Snail and E-cadherin protein levels in these tumours. Most likely, p38 MAPK, PAK1, AKT, ERK1/2 and GSK-3beta are involved in the up-regulation of Snail downstream of EGFR. Snail mRNA expression did not show a correlation with activated EGFR in these tumours. Taken together, profiling of signalling proteins in primary human tissues provided strong evidence that EGFR signalling is involved in Snail protein overexpression.


Subject(s)
Endometrial Neoplasms/metabolism , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , RNA, Messenger/metabolism , Transcription Factors/biosynthesis , Blotting, Western , Cell Line, Tumor , Cluster Analysis , Epidermal Growth Factor/metabolism , Female , Humans , Oligonucleotide Array Sequence Analysis , Phosphorylation , Pilot Projects , Reverse Transcriptase Polymerase Chain Reaction , Snail Family Transcription Factors
15.
J Cell Mol Med ; 13(11-12): 4532-9, 2009.
Article in English | MEDLINE | ID: mdl-19175686

ABSTRACT

It is now established that non-contractile cells with thin filopodia, also called vascular interstitial cells (VICs), are constitutively present in the media of many, if not all, blood vessels. The aim of this study was to determine the type of cell lineage to which arterial VICs belong using immunocytochemical, and real-time and reverse transcription PCR (RT-PCR). Using RT-PCR, we compared gene expression profiles of single VICs and smooth muscle cells (SMCs) freshly dispersed from rat middle cerebral artery. Both VICs and SMCs expressed the SMC marker, smooth muscle myosin heavy chain (SM-MHC), but did not express fibroblast, pericyte, neuronal, mast cell, endothelial or stem cell markers. Freshly isolated VICs also did not express c-kit, which is the marker for interstitial cells of Cajal in the gastrointestinal tract. Immunocytochemical labelling of contractile proteins showed that VICs and SMCs expressed SM-MHC similarly to the same degree, but VICs in contrast to SMCs had decreased expression of alpha-SM-actin and very low or no expression of calponin. Real-time RT-PCR was consistent with immunocytochemical experiments and showed that VICs had four times lower gene expression of calponin comparing to SMCs, which may explain VICs' inability to contract. VICs had greater expression than SMCs of structural proteins such as non-muscular beta-actin and desmin. The results obtained suggest that VICs represent a subtype of SMCs and may originate from the same precursor as SMCs, but later develop filopodia and a non-contractile cell phenotype.


Subject(s)
Middle Cerebral Artery/cytology , Myocytes, Smooth Muscle/cytology , Animals , Contractile Proteins/genetics , Contractile Proteins/metabolism , Gene Expression Regulation , Immunohistochemistry , Male , Middle Cerebral Artery/ultrastructure , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/ultrastructure , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction
16.
OMICS ; 11(1): 1-13, 2007.
Article in English | MEDLINE | ID: mdl-17411392

ABSTRACT

DNA microarray technologies have evolved rapidly to become a key high-throughput technology for the simultaneous measurement of the relative expression levels of thousands of individual genes. However, despite the widespread adoption of DNA microarray technology, there remains considerable uncertainty and scepticism regarding data obtained using these technologies. Comparing results from seemingly identical experiments from different laboratories or even from different days can prove challenging; these challenges increase further when data from different array platforms need to be compared. To comply with emerging regulations, the quality of the data generated from array experiments needs to be clearly demonstrated. This review describes several initiatives that aim to improve confidence in data generated by array experiments, including initiatives to develop standards for data reporting and storage, external spike-in controls, quality control procedures, best practice guidelines, and quality metrics.


Subject(s)
Gene Expression Profiling , Oligonucleotide Array Sequence Analysis/methods , Animals , Computational Biology , Genetic Techniques , Humans , Protein Array Analysis , Quality Control , RNA/chemistry
17.
Lab Invest ; 84(10): 1372-86, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15311212

ABSTRACT

E-cadherin is a cell-cell adhesion molecule and tumor invasion suppressor gene that is frequently altered in human cancers. It interacts through its cytoplasmic domain with beta-catenin which in turn interacts with the Wnt (wingless) signaling pathway. We have compared the effects of different tumor-derived E-cadherin variants with those of normal E-cadherin on Wnt signaling and on genes involved in epithelial mesenchymal transition. We established an in-house cDNA microarray composed of 1105 different, sequence verified cDNA probes corresponding to 899 unique genes that represent the majority of genes known to be involved in cadherin-dependent cell adhesion and signaling ('Adhesion/Signaling Array'). The expression signatures of E-cadherin-negative MDA-MB-435S cancer cells transfected with E-cadherin variants (in frame deletions of exon 8 or 9, D8 or D9, respectively, or a point mutation in exon 8 (D370A)) were compared to that of wild-type E-cadherin (WT) transfected cells. From the differentially expressed genes, we selected 38 that we subsequently analyzed by quantitative real-time RT-PCR and/or Northern Blot. A total of 92% of these were confirmed as differentially expressed. Most of these genes encode proteins of the cytoskeleton, cadherins/integrins, oncogenes and matrix metalloproteases. No significant expression differences of genes downstream of the Wnt-pathway were found, except in E-cadherin D8 transfected cells where upregulation of three Tcf/Lef-transcribed genes was seen. One possible reason for the lack of expression differences of the Tcf/Lef-regulated genes is upregulation of SFRP1 and SFRP3; both of which are competitive inhibitors of the Wnt proteins. Interestingly, known E-cadherin transcriptional repressors, such as SLUG (SNAI2), SIP1 (ZEB2), TWIST1, SNAIL (SNAI1) and ZEB1 (TCF8), but not E12/E47 (TCF3), had a lack of upregulation in cells expressing mutated E-cadherin compared to WT. In conclusion, E-cadherin mutations have no influence on expression of genes involved in Wnt-signaling, but they may promote their own expression by blocking upregulation of E-cadherin repressors.


Subject(s)
Cadherins/genetics , Gene Expression Regulation, Neoplastic , Mutation , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Animals , Blotting, Northern , Blotting, Western , Cell Line, Tumor , Clone Cells , Humans , Oligonucleotide Array Sequence Analysis , RNA, Neoplasm/analysis , Repressor Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Transfection , Up-Regulation , Wnt Proteins
18.
Int J Cancer ; 101(2): 196-7, 2002 Sep 10.
Article in English | MEDLINE | ID: mdl-12209998

ABSTRACT

We have combined data from case control studies designed to test the hypothesis that the c-160a promotor polymorphism in the gene coding for the cell adhesion molecule E-cadherin (CDH1) is associated with stomach cancer. A total of 899 individuals (433 patients and 466 controls) were analyzed. The genotype frequencies did not differ significantly between cases and controls, and the genotype-specific risks were not significantly different from unity, with an odds ratio for heterozygotes compared with the common homozygote of 1.3 (95% CI 0.98-1.8) and 1.2 (0.68-2.0) for rare homozygotes compared with common homozygotes. We found no evidence for differences in risk for the intestinal- and diffuse-type histopathologic subgroups.


Subject(s)
Cadherins/genetics , Genetic Predisposition to Disease , Polymorphism, Genetic/genetics , Promoter Regions, Genetic/genetics , Stomach Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Canada , Female , Gene Frequency , Germany , Humans , Male , Middle Aged , Odds Ratio , Portugal , Stomach Neoplasms/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...