Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Trace Elem Res ; 142(3): 848-64, 2011 Sep.
Article in English | MEDLINE | ID: mdl-20820942

ABSTRACT

We report the distribution of major and trace element concentrations in epipelagic zooplankton collected in the Northern Gulf of California in August 2003. The Bray-Curtis index defined three element assemblages in zooplankton: (1) major metals, which included only two elements, Na (3.6-17.0%) and Ca (1.0-4.8%). Na had its highest concentrations in the shallow tidally mixed Upper Gulf, where high salinity, temperature, and zooplankton biomass (dominated by copepods) prevailed. Ca showed its highest concentrations south of Ballenas Channel, characterized by tidal mixing and convergence-induced upwelling, indicated by low sea-surface temperature, salinity, and zooplankton biomass; (2) Six biological essential elements, like Fe (80-9,100 mg kg(-1)) and Zn (20-2,570 mg kg(-1)), were detected in high concentrations in zooplankton collected near Guaymas Basin, which had high surface temperature and chlorophyll a concentrations. (3) Metals of terrigenous origin, such as Sc (0.01-1.4 mg kg(-1)) and Th (0.03-2.3 mg kg(-1)), and redox-sensitive metals, like Co (3-23.8 mg kg(-1)); this was the assemblage with the largest number of elements (15). Both types of elements of assemblage 3 had maximum concentrations in the cyclonic eddy that dominates the summer circulation in the Northern region. We concluded that sediment resuspension by tidal mixing in the Upper Gulf, upwelling south of Ballenas Channel, and the cyclonic eddy were key oceanographic features that affected the element concentrations of epipelagic zooplankton in the Northern Gulf of California. Oceanographic mechanisms such as these may contribute to element incorporation in marine organisms in other seas.


Subject(s)
Zooplankton/metabolism , Animals , California , Chlorophyll/metabolism , Chlorophyll A , Mexico , Seasons
2.
PLoS One ; 4(1): e4140, 2009.
Article in English | MEDLINE | ID: mdl-19129910

ABSTRACT

Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest.


Subject(s)
Conservation of Natural Resources , Fisheries , Mollusca/growth & development , Animals , Fisheries/methods , Geography , Larva/physiology , Marine Biology , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL
...