Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 47(3): 1364-1371, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31883388

ABSTRACT

PURPOSE: Small field dosimetry for radiotherapy is one of the major challenges due to the size of most dosimeters, for example, sufficient spatial resolution, accurate dose distribution and energy dependency of the detector. In this context, the purpose of this research is to develop a small size scintillating detector targeting small field dosimetry and compare its performance with other commercial detectors. METHOD: An inorganic scintillator detector (ISD) of about 200 µm outer diameter was developed and tested through different small field dosimetric characterizations under high-energy photons (6 and 15 MV) delivered by an Elekta Linear Accelerator (LINAC). Percentage depth dose (PDD) and beam profile measurements were compared using dosimeters from PTW namely, microdiamond and PinPoint three-dimensional (PP3D) detector. A background fiber method has been considered to quantitate and eliminate the minimal Cerenkov effect from the total optical signal magnitude. Measurements were performed inside a water phantom under IAEA Technical Reports Series recommendations (IAEA TRS 381 and TRS 483). RESULTS: Small fields ranging from 3 × 3 cm2 , down to 0.5 × 0.5 cm2 were sequentially measured using the ISD and commercial dosimeters, and a good agreement was obtained among all measurements. The result also shows that, scintillating detector has good repeatability and reproducibility of the output signal with maximum deviation of 0.26% and 0.5% respectively. The Full Width Half Maximum (FWHM) was measured 0.55 cm for the smallest available square size field of 0.5 × 0.5 cm2 , where the discrepancy of 0.05 cm is due to the scattering effects inside the water and convolution effect between field and detector geometries. Percentage depth dose factor dependence variation with water depth exhibits nearly the same behavior for all tested detectors. The ISD allows to perform dose measurements at a very high accuracy from low (50 cGy/min) to high dose rates (800 cGy/min) and was found to be independent of dose rate variation. The detection system also showed an excellent linearity with dose; hence, calibration was easily achieved. CONCLUSIONS: The developed detector can be used to accurately measure the delivered dose at small fields during the treatment of small volume tumors. The author's measurement shows that despite using a nonwater-equivalent detector, the detector can be a powerful candidate for beam characterization and quality assurance in, for example, radiosurgery, Intensity-Modulated Radiotherapy (IMRT), and brachytherapy. Our detector can provide real-time dose measurement and good spatial resolution with immediate readout, simplicity, flexibility, and robustness.


Subject(s)
Inorganic Chemicals , Scintillation Counting/methods , Linear Models , Signal-To-Noise Ratio , X-Rays
2.
Biosens Bioelectron ; 54: 571-7, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24333568

ABSTRACT

Field effect transistors have risen as one of the most promising techniques in the development of biomedical diagnosis and monitoring. In such devices, the sensitivity and specificity of the sensor rely on the properties of the active sensing layer (gate dielectric and probe layer). We propose here a new type of transistor developed for the detection of Fe(3+) ions in which this sensing layer is made of a monolayer of lipids, engineered in such a way that it is not sensitive to pH in the acidic range, therefore making the device perfectly suitable for biomedical diagnosis. Probes are γ-pyrone derivatives that have been grafted to the lipid headgroups. Affinity constants derived for the chelator/Fe(3+) complexation as well as for other ions demonstrate very high sensitivity and specificity towards ferric ions with values as high as 5.10(10) M and a detected concentration as low as 50 fM.


Subject(s)
Biosensing Techniques/instrumentation , Ferric Compounds/analysis , Iron/analysis , Lipids/chemistry , Pyrones/chemistry , Transistors, Electronic , Cations/analysis , Sensitivity and Specificity
3.
Nanoscale Res Lett ; 8(1): 271, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23758858

ABSTRACT

XRF (X-ray fluorescence) is a powerful technique for elemental analysis with a high sensitivity. The resolution is presently limited by the size of the primary excitation X-ray beam. A test-bed for confocal-type XRF has been developed to estimate the ultimate lateral resolution which could be reached in chemical mapping using this technique. A polycapillary lens is used to tightly focus the primary X-ray beam of a low power rhodium X-ray source, while the fluorescence signal is collected by a SDD detector through a cylindrical monocapillary. This system was used to characterize the geometry of the fluorescent zone. Capillary radii ranging from 50 µm down to 5 µm were used to investigate the fluorescence signal maximum level This study allows to estimate the ultimate resolution which could be reached in-lab or on a synchrotron beamline. A new tool combining local XRF and scanning probe microscopy is finally proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...