Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Biotechnol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704245

ABSTRACT

Cultivating oleaginous organisms in non-sterile conditions can reduce the energy and cost of microbial oil production. Recent studies use strategies that enable non-sterile cultivation without affecting bioprocess productivity. This forum article discusses the trends, strategies, and prospects of non-sterile cultivation, as successful non-sterile cultivation could make microbial oil production economically viable.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121887, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36162211

ABSTRACT

Here, we report vinyl substituted triphenylamine (TPA-alk) fluorescent probe for the rapid and efficient detection of mercury ion (Hg2+) in water and biological environment. TPA-alk detects Hg2+ selectively over a wide range of competitive metal ions with a blue shift of 43 nm in the UV absorbance spectrum. The detection limit is found to be 0.146 µM (29.2 ppb) with high selectivity over a wide range of competitive metal ions. DFT study explains the blue shift in the UV-vis absorption band of the optical probe upon the addition of Hg2+. Cell viability assay illustrates that the probe is biocompatible and it has low cytotoxicity even at its higher concentration. Cell imaging studies demonstrate the efficiency of the TPA-alk probe for the micromolar detection of mercury (II) in live BMG1 cells.


Subject(s)
Mercury , Fluorescent Dyes , Water , Spectrometry, Fluorescence/methods , Ions , Metals , Polyvinyl Chloride , Receptor Protein-Tyrosine Kinases
3.
J Mol Graph Model ; 102: 107769, 2021 01.
Article in English | MEDLINE | ID: mdl-33152616

ABSTRACT

Coronavirus outbreak in December 2019 (COVID-19) is an emerging viral disease that poses major menace to Humans and it's a crucial need to find the possible treatment strategies. Spike protein (S2), a envelop glycoprotein aids viral entry into the host cells that corresponds to immunogenic ACE2 receptor binding and represents a potential antiviral drug target. Several drugs such as antimalarial, antibiotic, anti-inflammatory and HIV-protease inhibitors are currently undergoing treatment as clinical studies to test the efficacy and safety of COVID-19. Some promising results have been observed with the patients and also with high mortality rate. Hence, there is a need to screen the best CoV inhibitors using insilico analysis. The Molecular methodologies applied in the present study are, Molecular docking, virtual screening, drug-like and ADMET prediction helps to target CoV inhibitors. The results were screened based on docking score, H-bonds, and amino acid interactions. The results shows HIV-protease inhibitors such as cobicistat (-8.3kcal/mol), Darunavir (-7.4kcal/mol), Lopinavir (-9.1kcal/mol) and Ritonavir (-8.0 kcal/mol), anti-inflammatory drugs such as Baricitinib (-5.8kcal/mol), Ruxolitinib (-6.5kcal/mol), Thalidomide (-6.5kcal/mol), antibiotic drugs such as Erythromycin(-9.0kcal/mol) and Spiramycin (-8.5kcal/mol) molecules have good affinity towards spike protein compared to antimalarial drugs Chloroquine (-6.2kcal/mol), Hydroxychloroquine (-5.2kcal/mol) and Artemisinin (-6.8kcal/mol) have poor affinity to spike protein. The insilico pharmacological evaluation shows that these molecules exhibit good affinity of drug-like and ADMET properties. Hence, we propose that HIVprotease, anti-inflammatory and antibiotic inhibitors are the potential lead drug molecules for spike protein and preclinical studies needed to confirm the promising therapeutic ability against COVID-19.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/virology , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/drug effects , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Computer Simulation , Drug Discovery , Drug Evaluation, Preclinical , Drug Repositioning , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , User-Computer Interface
4.
Biochim Biophys Acta ; 1605(1-3): 83-95, 2003 Aug 18.
Article in English | MEDLINE | ID: mdl-12907303

ABSTRACT

The electric field-induced absorption changes (Stark effect) of light-harvesting complex II (LHCII) in different oligomerisation states-monomeric, trimeric and aggregated-have been probed at 77 K. All the chlorophyll (Chl) a molecules exhibit electro-optic properties in the Q(y) absorption region characterized by a change in dipole moment /Deltamu-->/ =0.6+/-0.06D/f and polarizability, Tr(Deltaalpha;) approximately 55+/-5 A(3)/f(2) upon electronic excitation, which are similar to those of unbound monomeric Chl a, indicating the absence of strong delocalization of the excitations which would be expected in the presence of strong excitonic interactions. The Stark effect in the Chl b absorption region is significantly bigger with /Deltamu-->/ values of the order of 2.0+/-0.2 D/f and it is attributed to strong interactions with neoxanthin molecules. Clear oligomerisation-dependent differences are observed in the carotenoid region, mainly due to the appearance of a new xanthophyll absorption band at 509 in the spectra of trimers and oligomers. It is ascribed to some lutein molecules, in agreement with previous experimental observations. The electro-optic properties of these lutein molecules are significantly different from those of the other xanthophylls in LHCII, which do not exhibit such a big change in dipole moment upon electronic excitation (/Deltamu-->/ =14.6+/-2.0 D/f). Upon aggregation of LHCII some extra absorption appears on the red side of the main Chl a Q(y) absorption band. In contrast to an earlier suggestion [J. Phys. Chem., A 103 (1999) 2422], no indications are found for the charge-transfer character of the corresponding band. The assignments of the S(2) electronic transitions of neoxanthin and lutein in LHCII and possible origins of the Stark effect are discussed.


Subject(s)
Photosynthetic Reaction Center Complex Proteins/chemistry , Chlorophyll/chemistry , Spectrum Analysis , Xanthophylls/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...