Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(3)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804238

ABSTRACT

The room-temperature synthesis of silver (AgNPs) and gold (AuNPs) nanoparticles from aqueous solution of AgNO3 and HAuCl4 respectively, using Rumex roseus (RR) plant extract as a reducing agent, is reported here for the first time. The nanoparticles obtained were characterized by UV-Vis spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS). The formation of nanoparticles with spherical-shaped morphology was verified by TEM and confirmed by UV-Vis spectroscopy through the analysis of Ag and Au plasmon resonance peak and DLS measurements. New electrochemical sensors have been developed by employing the synthesized Ag and Au nanoparticles as modifiers of glassy carbon electrode (GCE) and screen-printed carbon electrode (SPCE), respectively. The AgNPs-modified GCE was investigated for the electrochemical determination of hydrogen peroxide (H2O2). Further enhancement of electrochemical performances was obtained using a nanocomposite made of AgNPs and reduced graphene oxide (rGO)-modified GCE. The AuNPs-SPCE sensor was instead tested in the electrochemical sensing of riboflavin (RF). To our knowledge, this is the first paper reporting Rumex roseus plant extract as a source for the synthesis of metal nanoparticles and their use for developing simple, sensitive and reliable electrochemical sensors for H2O2 and RF.

2.
Sensors (Basel) ; 21(7)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916680

ABSTRACT

Pure, mixed and doped metal oxides (MOX) have attracted great interest for the development of electrical and electrochemical sensors since they are cheaper, faster, easier to operate and capable of online analysis and real-time identification. This review focuses on highly sensitive chemoresistive type sensors based on doped-SnO2, RhO, ZnO-Ca, Smx-CoFe2-xO4 semiconductors used to detect toxic gases (H2, CO, NO2) and volatile organic compounds (VOCs) (e.g., acetone, ethanol) in monitoring of gaseous markers in the breath of patients with specific pathologies and for environmental pollution control. Interesting results about the monitoring of biochemical substances as dopamine, epinephrine, serotonin and glucose have been also reported using electrochemical sensors based on hybrid MOX nanocomposite modified glassy carbon and screen-printed carbon electrodes. The fundamental sensing mechanisms and commercial limitations of the MOX-based electrical and electrochemical sensors are discussed providing research directions to bridge the existing gap between new sensing concepts and real-world analytical applications.

3.
Sensors (Basel) ; 19(15)2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31387328

ABSTRACT

Sensing properties of chemical sensors based on ternary hydroxyapatite-graphene-multiwalled carbon nanotube (HA-GN-MWCNT) nanocomposite in the detection of chemical substances representing risk factors for sudden infant death syndrome (SIDS), have been evaluated. Characterization data of the synthesized composite have shown that the graphene-MWCNT network serves as a matrix to uniformly disperse the hydroxyapatite nanoparticles and provide suitable electrical properties required for developing novel electrochemical and conductometric sensors. A HA-GN-MWCNT composite-modified glassy carbon electrode (HA-GN-MWCNT/GCE) has been fabricated and tested for the simultaneous monitoring of nicotine and caffeine by cyclic voltammetry (CV) and square wave voltammetry (SWV), whereas a HA-GN-MWCNT conductive gas sensor has been tested for the detection of CO2 in ambient air. Reported results suggest that the synergic combination of the chemical properties of HA and electrical/electrochemical characteristics of the mixed graphene-MWCNT network play a prominent role in enhancing the electrochemical and gas sensing behavior of the ternary HA-GN-MWCNT hybrid nanostructure. The high performances of the developed sensors make them suitable for monitoring unhealthy actions (e. g. smoking, drinking coffee) in breastfeeding women and environmental factors (bad air quality), which are associated with an enhanced risk for SIDS.


Subject(s)
Carbon Dioxide/analysis , Electrochemical Techniques/methods , Sudden Infant Death/diagnosis , Caffeine/analysis , Durapatite/chemistry , Electrodes , Graphite/chemistry , Humans , Hydrogen-Ion Concentration , Infant , Nanotubes, Carbon/chemistry , Nicotine/analysis , Risk Factors , Smoking
4.
Gene ; 558(1): 159-72, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25554524

ABSTRACT

The nematode Caenorhabditis elegans is used as a model system for the study of host-pathogen interactions. Lipoteichoic acid (LTA) is one of the major virulent and immunostimulatory components found in gram positive bacteria. The current study used LTA isolated from Staphylococcus aureus and pathogenic and non-pathogenic Staphylococcus epidermidis. The overall physiological assays revealed that LTA exposed C. elegans show a significant reduction in the life span, production of eggs and progenies. To understand the involvement of innate immune specific players at the mRNA level, the regulation of few candidate antimicrobial genes was studied during Staphylococcal LTA exposures. qPCR analysis indicated an upregulation of antimicrobial peptides during LTA exposures. To understand the involvement of LTA and other virulent genes during infection, the regulation of LTA synthase and a few virulence genes was monitored during host exposure. The qPCR analyses indicated the upregulation of ltaS and other virulence genes (atoxin, sak, ssaA and fbe) during infection. Ability of the pathogens to modify their internal machinery during host presence was monitored by Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy and cyclic voltametric analyses. The FTIR results indicated distinct alterations of peaks from Staphylococcal LTA composition between control and the host exposed. Further, EIS and CV data displayed clear differences between the host exposed Staphylococcal samples compared to their respective unexposed controls. The pathogenic and non-pathogenic strains showed different types of regulations and interactions during host exposures. The observed modifications clearly suggest that the Gram positive pathogen changes its LTA production and possibly the structure to cause a severe pathogenic effect on an interacting host.


Subject(s)
Caenorhabditis elegans/immunology , Caenorhabditis elegans/microbiology , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Models, Animal , Staphylococcus epidermidis/pathogenicity , Staphylococcus/pathogenicity , Animals , Caenorhabditis elegans/physiology , Escherichia coli/physiology , Fertility , Lipopolysaccharides/biosynthesis , Methicillin-Resistant Staphylococcus aureus/genetics , Penicillin Resistance , Staphylococcus/drug effects , Staphylococcus/genetics , Staphylococcus epidermidis/genetics , Teichoic Acids/biosynthesis , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...