Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Trace Elem Res ; 179(2): 237-246, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28258359

ABSTRACT

The present study aimed to investigate, in the streptozotocin-induced mild diabetic rat model, the zinc (Zn), copper (Cu), iron (Fe), calcium (Ca), and magnesium (Mg) concentration in serum, liver, and kidney tissues, and urine samples from adult Wistar rats treated neonatally with streptozotocin (STZ). Diabetes was induced by subcutaneous administration of streptozotocin (100 mg/Kg) in female Wistar rats of 2 days old (STZ, n = 10). Control group (CG, n = 10) received only sodium-citrate buffer. The mineral concentrations were measured by atomic absorption spectrophotometry. The validity and accuracy were checked by conventional methods. STZ neonatal injection successfully leaded to mild diabetes in the adult rats. Serum concentrations of Zn, Cu, Fe, Ca, and Mg showed no changes (p > 0.05) due to diabetes. The Zn, Fe, Ca, and Mg concentrations in liver and kidney tissues were not different (p > 0.05) between STZ and CG. The mean values of Cu were higher (p < 0.05) in liver and kidney samples from STZ as compared to CG. Urine minerals concentrations (Zn, Cu, Fe and Ca) in STZ-rats group were lower (p < 0.05) than CG. However, the content of all evaluated minerals in the excreted urine were higher (p < 0.01) in STZ-rats during a 24 h collection period. Urinary excretion of Zn, Cu, Fe, Ca, and Mg was strongly correlated with urinary volume during the 24 h period (r > 0.7; p < 0.001). Observed changes in mineral metabolism of STZ-induced mild diabetes model could be due to the endocrine imbalance associated with the diabetic condition.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Micronutrients/metabolism , Animals , Copper/blood , Copper/metabolism , Copper/urine , Female , Iron/blood , Iron/metabolism , Iron/urine , Magnesium/blood , Magnesium/metabolism , Magnesium/urine , Male , Micronutrients/blood , Micronutrients/urine , Rats, Wistar , Reproducibility of Results , Streptozocin , Zinc/blood , Zinc/metabolism , Zinc/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...