Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 18(10): 2897-907, 1999 May 17.
Article in English | MEDLINE | ID: mdl-10329635

ABSTRACT

We have investigated the role of histone acetylation in X chromosome inactivation, focusing on its possible involvement in the regulation of Xist, an essential gene expressed only from the inactive X (Xi). We have identified a region of H4 hyperacetylation extending up to 120 kb upstream from the Xist somatic promoter P1. This domain includes the promoter P0, which gives rise to the unstable Xist transcript in undifferentiated cells. The hyperacetylated domain was not seen in male cells or in female XT67E1 cells, a mutant cell line heterozygous for a partially deleted Xist allele and in which an increased number of cells fail to undergo X inactivation. The hyperacetylation upstream of Xist was lost by day 7 of differentiation, when X inactivation was essentially complete. Wild-type cells differentiated in the presence of the histone deacetylase inhibitor Trichostatin A were prevented from forming a normally inactivated X, as judged by the frequency of underacetylated X chromosomes detected by immunofluorescence microscopy. Mutant XT67E1 cells, lacking hyperacetylation upstream of Xist, were less affected. We propose that (i) hyperacetylation of chromatin upstream of Xist facilitates the promoter switch that leads to stabilization of the Xist transcript and (ii) that the subsequent deacetylation of this region is essential for the further progression of X inactivation.


Subject(s)
Dosage Compensation, Genetic , Histones/metabolism , RNA, Untranslated , Transcription Factors/genetics , X Chromosome/genetics , Acetylation , Animals , Cell Differentiation , Cell Division , Cell Line , Chromatin/metabolism , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Developmental , Histone Deacetylase Inhibitors , Hydroxamic Acids/pharmacology , Mice , Mutation , Promoter Regions, Genetic , RNA, Long Noncoding , Stem Cells , Time Factors
2.
Dev Genet ; 22(1): 65-73, 1998.
Article in English | MEDLINE | ID: mdl-9499581

ABSTRACT

In mammals, the levels of X-linked gene products in males and females are equalised by the silencing, early in development, of most of the genes on one of the two female X chromosomes. Once established, the silent state is stable from one cell generation to the next. In eutherian mammals, the inactive X chromosome (Xi) differs from its active homologue (Xa) in a number of ways, including increased methylation of selected CpGs, replication late in S-phase, expression of the Xist gene with binding of Xist RNA and underacetylation of core histones. The latter is a common property of genetically inactive chromatin but, in the case of Xi, it is not clear whether it is an integral part of the silencing process or simply a consequence of some other property of Xi, such as late replication. The present review describes two approaches that address this problem. The first shows that Xi in marsupial mammals also contains underacetylated H4, even though its properties differ widely from those of the eutherian Xi. The continued presence of histone underacetylation on Xi in these evolutionarily distant mammals argues for its fundamental importance. The second approach uses mouse embryonic stem cells and places H4 deacetylation in a sequence of events leading to complete X inactivation. The results argue that histone underacetylation plays a role in the stabilisation of the inactive state, rather than in its initiation.


Subject(s)
Dosage Compensation, Genetic , Histones/metabolism , Mammals/genetics , Acetylation , Animals , Blastocyst/cytology , Cell Differentiation/physiology , Female , Humans , Male , Marsupialia/genetics , Stem Cells/cytology
3.
Dev Biol ; 180(2): 618-30, 1996 Dec 15.
Article in English | MEDLINE | ID: mdl-8954732

ABSTRACT

In female mammalian cells, dosage compensation for X-linked genes is achieved by the transcriptional silencing, early in development, of many genes on just one of the two X chromosomes. Several properties distinguish the inactive X (Xi) from its active counterpart (Xa). These include expression of Xist, a gene located in the X-inactivation center (Xic), late replication, differential methylation of selected CpG islands and underacetylation of histone H4. The relationship between these properties and transcriptional silencing remains unclear. Female mouse embryonic stem (ES) cells have two active X chromosomes, one of which is inactivated as cells differentiate in culture. We describe here the use of these cells in studying the sequence of events leading to X-inactivation. By immunofluorescent labeling of metaphase chromosome spreads from ES cells with antibodies to acetylated H4, we show that an underacetylated X chromosome appears only after 4 days of differentiation, and only in female cells. The frequency of cells with an underacetylated X reaches a maximum by Day 6. In undifferentiated cells, H4 in centric heterochromatin is acetylated to the same extent as that in euchromatin but has become relatively underacetylated, as in adult cells, by Day 4 of differentiation (i.e. , when deacetylation of Xi is first seen). The overall deacetylation of Xi follows Xist expression and the first appearance of a single, late-replicating X, both of which occur on Day 2. It also follows the silencing of X-linked genes. Levels of mRNA from four such genes, Hprt, G6pd, Rps4, and Pgk-1, had all fallen by approximately 50% (relative to the autosomal gene Aprt) by Days 2-4. The results show that properties that characterize Xi are put in place in a set order over several days. H4 deacetylation occupies a defined place within this sequence, suggesting that it is an intrinsic part of the X-inactivation process. The stage at which a completely deacetylated Xi is first seen suggests that deacetylation may be necessary for the maintenance of silencing but is not required for its initiation. Nor is it required for, or an immediate consequence of, late replication. However, we note that selective deacetylation of H4 on specific genes would not be detected by the microscopical approach we have used and that such selective deacetylation may still be part of the silencing process.


Subject(s)
Histones/metabolism , RNA, Untranslated , Stem Cells/physiology , Transcription Factors/genetics , X Chromosome , Acetylation , Adenine Phosphoribosyltransferase/biosynthesis , Adenine Phosphoribosyltransferase/genetics , Animals , Cell Differentiation , Cell Line , Chromatin/physiology , Female , Genetic Markers , Glucosephosphate Dehydrogenase/genetics , Hypoxanthine Phosphoribosyltransferase/genetics , Male , Mammals , Mice , Phosphoglycerate Kinase/genetics , Polymerase Chain Reaction , RNA, Long Noncoding , Stem Cells/cytology , Transcription Factors/biosynthesis , Transcription, Genetic
4.
Chromosome Res ; 2(5): 398-404, 1994 Sep.
Article in English | MEDLINE | ID: mdl-7981944

ABSTRACT

In the fruit fly Drosophila, dosage compensation involves several proteins acting in concert to double the transcriptional activity of genes on the single male X chromosome. Three of these proteins, MLE, MSL-1 and histone H4 acetylated at lysine 16 (H4Ac16), have recently been shown to be located almost exclusively on the male X chromosome in interphase (polytene) cells. We show here that in neuroblasts from third instar Drosophila larvae antisera to H4Ac16, MLE and MSL-1 uniquely label the distal, euchromatic region of the male X chromosome through mitosis. The centromere-proximal, heterochromatic region of the male X is not labelled with these antisera, nor are male autosomes or any chromosomes in female cells. That the association of H4Ac16 with the male X chromosome persists, even when the chromosome is maximally compacted and transcriptionally quiescent, argues that this modified histone is an integral component of the dosage compensation pathway. In the nuclei of interphase neuroblasts from male (but never female) larvae, antibodies to H4Ac16 revealed a small, brightly labelled patch against a background of generally weak nuclear staining. In double-labelling experiments, this patch was also labelled, albeit comparatively weakly, with antibodies to MSL-1. These results strongly suggest that the distal, euchromatic region of the X chromosome in male cells occupies a limited and relatively compact nuclear domain.


Subject(s)
Drosophila melanogaster/genetics , Histones/metabolism , Acetylation , Animals , Dosage Compensation, Genetic , Female , Larva , Lysine , Male , Mitosis , X Chromosome
SELECTION OF CITATIONS
SEARCH DETAIL
...