Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10241, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702365

ABSTRACT

Within the bloodstream, monocytes must traverse the microvasculature to prevent leukostasis, which is the entrapment of monocytes within the confines of the microvasculature. Using the model cell line, THP-1, and VCAM-1 coated channels to simulate the microvasculature surface, we demonstrate that monocytes predominantly adopt an amoeboid phenotype, which is characterized by the formation of blebs. As opposed to cortical actin flow in leader blebs, cell movement is correlated with myosin contraction at the cell rear. It was previously documented that cofilin-1 promotes cortical actin turnover at leader bleb necks in melanoma cells. In monocytes, our data suggest that cofilin-1 promotes the local upregulation of myosin contractility through actin cytoskeleton remodeling. In support of this concept, cofilin-1 is found to localize to a single cell edge. Moreover, the widespread upregulation of myosin contractility was found to inhibit migration. Thus, monocytes within the microvasculature may avoid entrapment by adopting an amoeboid mode of migration.


Subject(s)
Actin Cytoskeleton , Cell Movement , Cofilin 1 , Monocytes , Humans , Actin Cytoskeleton/metabolism , Actins/metabolism , Cofilin 1/metabolism , Monocytes/metabolism , Myosins/metabolism , THP-1 Cells , Vascular Cell Adhesion Molecule-1/metabolism
2.
bioRxiv ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37609240

ABSTRACT

Within the bloodstream, monocytes must traverse the microvasculature to prevent leukostasis, which is the entrapment of monocytes within the confines of the microvasculature. Using the model cell line, THP-1, and VCAM-1 coated channels to simulate the microvasculature surface, we demonstrate that monocytes predominantly adopt an amoeboid phenotype, which is characterized by the formation of blebs. As opposed to cortical actin flow in leader blebs, cell movement is correlated with myosin contraction at the cell rear. It was previously documented that cofilin-1 promotes cortical actin turnover at leader bleb necks in melanoma cells. In monocytes, our data suggest that cofilin-1 promotes the local upregulation of myosin contractility through actin cytoskeleton remodeling. In support of this concept, cofilin-1 is found to localize to a single cell edge. Moreover, the widespread upregulation of myosin contractility was found to inhibit migration. Thus, monocytes within the microvasculature may avoid entrapment by adopting an amoeboid mode of migration.

3.
Res Sq ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961301

ABSTRACT

Within the bloodstream, monocytes must traverse the microvasculature to prevent leukostasis, which is the entrapment of monocytes within the confines of the microvasculature. Using the model cell line, THP-1, and VCAM-1 coated channels to simulate the microvasculature, we demonstrate that monocytes predominantly adopt an amoeboid phenotype, which is characterized by the formation of blebs. As opposed to cortical actin flow in leader blebs, cell movement is correlated with myosin contraction at the cell rear. Previously, we documented that cofilin-1 promotes cortical actin turnover at leader bleb necks in melanoma cells. In monocytes, our data suggest that cofilin-1 promotes the local upregulation of myosin contractility through actin cytoskeleton remodeling. In support of this concept, cofilin-1 is found to localize to a single cell edge. Moreover, the widespread upregulation of myosin contractility was found to inhibit migration. Thus, monocytes within the microvasculature may avoid entrapment by adopting an amoeboid mode of migration.

4.
J Cell Sci ; 135(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35362531

ABSTRACT

When metastasizing, tumor cells must traverse environments with diverse physicochemical properties. Recently, the cell nucleus has emerged as a major regulator of the transition from mesenchymal to fast amoeboid (leader bleb-based) migration. Here, we demonstrate that increasing nuclear stiffness through elevating lamin A, inhibits fast amoeboid migration in melanoma cells. Importantly, nuclei may respond to force through stiffening. A key factor in this process is the inner nuclear membrane (INM) protein emerin. Accordingly, we determined the role of emerin in regulating fast amoeboid migration. Strikingly, we found that both the up- and downregulation of emerin results in an inhibition of fast amoeboid migration. However, when key Src phosphorylation sites were removed, upregulation of emerin no longer inhibited fast amoeboid migration. Interestingly, as measured by using a Src biosensor, activity of Src was low in cells within a confined environment. Thus, the fast amoeboid migration of melanoma cells depends on the precise calibration of emerin activity.


Subject(s)
Amoeba , Melanoma , Amoeba/metabolism , Cell Nucleus/metabolism , Humans , Melanoma/pathology , Membrane Proteins , Nuclear Envelope/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
5.
PLoS One ; 17(4): e0267740, 2022.
Article in English | MEDLINE | ID: mdl-35486637

ABSTRACT

When confined, cells have recently been shown to undergo a phenotypic switch to what has been termed, fast amoeboid (leader bleb-based) migration. However, as this is a nascent area of research, few tools are available for the rapid analysis of cell behavior. Here, we demonstrate that a novel Fiji/ImageJ-based plugin, Analyze_Blebs, can be used to quickly obtain cell migration parameters and morphometrics from time lapse images. As validation, we show that Analyze_Blebs can detect significant differences in cell migration and morphometrics, such as the largest bleb size, upon introducing different live markers of F-actin, including F-tractin and LifeAct tagged with green and red fluorescent proteins. We also demonstrate, using flow cytometry, that live markers increase total levels of F-actin. Furthermore, that F-tractin increases cell stiffness, which was found to correlate with a decrease in migration, thus reaffirming the importance of cell mechanics as a determinant of Leader Bleb-Based Migration (LBBM).


Subject(s)
Cell Membrane/metabolism , Cell Movement , Cell Tracking/methods , Actin Cytoskeleton/metabolism , Actins/metabolism , Biological Phenomena
6.
J Biol Chem ; 295(19): 6700-6709, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32234762

ABSTRACT

Tumor cells can spread to distant sites through their ability to switch between mesenchymal and amoeboid (bleb-based) migration. Because of this difference, inhibitors of metastasis must account for each migration mode. However, the role of vimentin in amoeboid migration has not been determined. Because amoeboid leader bleb-based migration (LBBM) occurs in confined spaces and vimentin is known to strongly influence cell-mechanical properties, we hypothesized that a flexible vimentin network is required for fast amoeboid migration. To this end, here we determined the precise role of the vimentin intermediate filament system in regulating the migration of amoeboid human cancer cells. Vimentin is a classic marker of epithelial-to-mesenchymal transition and is therefore an ideal target for a metastasis inhibitor. Using a previously developed polydimethylsiloxane slab-based approach to confine cells, RNAi-based vimentin silencing, vimentin overexpression, pharmacological treatments, and measurements of cell stiffness, we found that RNAi-mediated depletion of vimentin increases LBBM by ∼50% compared with control cells and that vimentin overexpression and simvastatin-induced vimentin bundling inhibit fast amoeboid migration and proliferation. Importantly, these effects were independent of changes in actomyosin contractility. Our results indicate that a flexible vimentin intermediate filament network promotes LBBM of amoeboid cancer cells in confined environments and that vimentin bundling perturbs cell-mechanical properties and inhibits the invasive properties of cancer cells.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Intermediate Filaments/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Vimentin/metabolism , A549 Cells , Humans , Intermediate Filaments/genetics , Neoplasm Proteins/genetics , Neoplasms/genetics , Vimentin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...