Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 61(6): 2372-2383, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29466005

ABSTRACT

Optimization of the pharmacokinetic (PK) properties of a series of activators of adenosine monophosphate-activated protein kinase (AMPK) is described. Derivatives of the previously described 5-aryl-indole-3-carboxylic acid clinical candidate (1) were examined with the goal of reducing glucuronidation rate and minimizing renal excretion. Compounds 10 (PF-06679142) and 14 (PF-06685249) exhibited robust activation of AMPK in rat kidneys as well as desirable oral absorption, low plasma clearance, and negligible renal clearance in preclinical species. A correlation of in vivo renal clearance in rats with in vitro uptake by human and rat renal organic anion transporters (human OAT/rat Oat) was identified. Variation of polar functional groups was critical to mitigate active renal clearance mediated by the Oat3 transporter. Modification of either the 6-chloroindole core to a 4,6-difluoroindole or the 5-phenyl substituent to a substituted 5-(3-pyridyl) group provided improved metabolic stability while minimizing propensity for active transport by OAT3.


Subject(s)
AMP-Activated Protein Kinases/drug effects , Enzyme Activators/chemical synthesis , Enzyme Activators/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Animals , Enzyme Activation/drug effects , Enzyme Activators/pharmacokinetics , Humans , Indoles/pharmacokinetics , Intestinal Absorption , Kidney/drug effects , Kidney/enzymology , Male , Models, Molecular , Organic Anion Transporters, Sodium-Independent/metabolism , Rats , Rats, Wistar , Structure-Activity Relationship
2.
J Med Chem ; 61(3): 1086-1097, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29300474

ABSTRACT

A novel series of morpholine-based nonsteroidal mineralocorticoid receptor antagonists is reported. Starting from a pyrrolidine HTS hit 9 that possessed modest potency but excellect selectivity versus related nuclear hormone receptors, a series of libraries led to identification of morpholine lead 10. After further optimization, cis disubstituted morpholine 22 was discovered, which showed a 45-fold boost in binding affinity and corresponding functional potency compared to 13. While 22 had high clearance in rat, it provided sufficient exposure at high doses to favorably assess in vivo efficacy (increased urinary Na+/K+ ratio) and safety. In contrast to rat, the dog and human MetID and PK profiles of 22 were adequate, suggesting that it could be suitable as a potential clinical asset.


Subject(s)
Mineralocorticoid Receptor Antagonists/chemistry , Mineralocorticoid Receptor Antagonists/pharmacology , Morpholinos/chemistry , Morpholinos/pharmacology , Oxazines/chemistry , Receptors, Mineralocorticoid/metabolism , Animals , Clinical Trials, Phase I as Topic , Drug Evaluation, Preclinical , Female , Humans , Inhibitory Concentration 50 , Models, Molecular , Protein Conformation , Rats , Rats, Wistar , Receptors, Mineralocorticoid/chemistry , Structure-Activity Relationship
3.
J Med Chem ; 58(18): 7173-85, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26349027

ABSTRACT

The medicinal chemistry and preclinical biology of imidazopyridine-based inhibitors of diacylglycerol acyltransferase 2 (DGAT2) is described. A screening hit 1 with low lipophilic efficiency (LipE) was optimized through two key structural modifications: (1) identification of the pyrrolidine amide group for a significant LipE improvement, and (2) insertion of a sp(3)-hybridized carbon center in the core of the molecule for simultaneous improvement of N-glucuronidation metabolic liability and off-target pharmacology. The preclinical candidate 9 (PF-06424439) demonstrated excellent ADMET properties and decreased circulating and hepatic lipids when orally administered to dyslipidemic rodent models.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Imidazoles/chemistry , Pyridines/chemistry , Pyrrolidines/chemistry , Animals , Cyclopropanes/chemistry , Cyclopropanes/pharmacokinetics , Cyclopropanes/pharmacology , Dogs , Dyslipidemias/drug therapy , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Lipid Metabolism/drug effects , Male , Mice, Knockout , Pyridines/pharmacokinetics , Pyridines/pharmacology , Pyrrolidines/pharmacokinetics , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, LDL/genetics , Sf9 Cells , Spodoptera , Stereoisomerism , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 23(1): 194-7, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23177788

ABSTRACT

A novel GPR119 agonist based on the 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole scaffold was designed through lead optimization starting from pyrazole-based GPR119 agonist 1. The design is centered on the conformational restriction of the core scaffold, while minimizing the change in spatial relationships of two key pharmacophoric elements (piperidine-carbamate and aryl sulfone).


Subject(s)
Pyrazoles/chemistry , Receptors, G-Protein-Coupled/agonists , Carbamates/chemistry , Humans , Piperidines/chemistry , Protein Binding , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
5.
ACS Med Chem Lett ; 4(1): 63-8, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-24900564

ABSTRACT

Takeda G-protein-coupled receptor 5 (TGR5) represents an exciting biological target for the potential treatment of diabetes and metabolic syndrome. A new class of high-throughput screening (HTS)-derived tetrahydropyrido[4,3-d]pyrimidine amide TGR5 agonists is disclosed. We describe our effort to identify an orally available agonist suitable for assessment of systemic TGR5 agonism. This effort resulted in identification of 16, which had acceptable potency and pharmacokinetic properties to allow for in vivo assessment in dog. A key aspect of this work was the calibration of human and dog in vitro assay systems that could be linked with data from a human ex vivo peripheral blood monocyte assay that expresses receptor at endogenous levels. Potency from the human in vitro assay was also found to correlate with data from an ex vivo human whole blood assay. This calibration exercise provided confidence that 16 could be used to drive plasma exposures sufficient to test the effects of systemic activation of TGR5.

6.
Bioorg Med Chem Lett ; 21(5): 1306-9, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21310611

ABSTRACT

The design and synthesis of a GPR119 agonist bearing a 2-(2,3,6-trifluorophenyl)acetamide group is described. The design capitalized on the conformational restriction found in N-ß-fluoroethylamide derivatives to help maintain good levels of potency while driving down both lipophilicity and oxidative metabolism in human liver microsomes. The chemical stability and bioactivation potential are discussed.


Subject(s)
Acetamides/chemistry , Acetamides/pharmacology , Drug Design , Receptors, G-Protein-Coupled/agonists , Acetamides/chemical synthesis , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Molecular Structure , Receptors, G-Protein-Coupled/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...