Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 4(12): eaat9199, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30539142

ABSTRACT

Coupling spin qubits to electric fields is attractive to simplify qubit manipulation and couple qubits over long distances. Electron spins in silicon offer long lifetimes, but their weak spin-orbit interaction makes electrical coupling challenging. Hole spins bound to acceptor dopants, spin-orbit-coupled J = 3/2 systems similar to Si vacancies in SiC and single Co dopants, are an electrically active spin system in silicon. However, J = 3/2 systems are much less studied than S = 1/2 electrons, and spin readout has not yet been demonstrated for acceptors in silicon. Here, we study acceptor hole spin dynamics by dispersive readout of single-hole tunneling between two coupled acceptors in a nanowire transistor. We identify m J = ±1/2 and m J = ±3/2 levels, and we use a magnetic field to overcome the initial heavy-light hole splitting and to tune the J = 3/2 energy spectrum. We find regimes of spin-like (+3/2 to -3/2) and charge-like (±1/2 to ±3/2) relaxations, separated by a regime of enhanced relaxation induced by mixing of light and heavy holes. The demonstrated control over the energy level ordering and hybridization are new tools in the J = 3/2 system that are crucial to optimize single-atom spin lifetime and electrical coupling.

2.
Phys Rev Lett ; 120(13): 137702, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29694195

ABSTRACT

In a semiconductor spin qubit with sizable spin-orbit coupling, coherent spin rotations can be driven by a resonant gate-voltage modulation. Recently, we have exploited this opportunity in the experimental demonstration of a hole spin qubit in a silicon device. Here we investigate the underlying physical mechanisms by measuring the full angular dependence of the Rabi frequency, as well as the gate-voltage dependence and anisotropy of the hole g factor. We show that a g-matrix formalism can simultaneously capture and discriminate the contributions of two mechanisms so far independently discussed in the literature: one associated with the modulation of the g factor, and measurable by Zeeman energy spectroscopy, the other not. Our approach has a general validity and can be applied to the analysis of other types of spin-orbit qubits.

3.
Nano Lett ; 17(2): 1001-1006, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28080065

ABSTRACT

We report on dual-gate reflectometry in a metal-oxide-semiconductor double-gate silicon transistor operating at low temperature as a double quantum dot device. The reflectometry setup consists of two radio frequency resonators respectively connected to the two gate electrodes. By simultaneously measuring their dispersive responses, we obtain the complete charge stability diagram of the device. Electron transitions between the two quantum dots and between each quantum dot and either the source or the drain contact are detected through phase shifts in the reflected radio frequency signals. At finite bias, reflectometry allows probing charge transitions to excited quantum-dot states, thereby enabling direct access to the energy level spectra of the quantum dots. Interestingly, we find that in the presence of electron transport across the two dots the reflectometry signatures of interdot transitions display a dip-peak structure containing quantitative information on the charge relaxation rates in the double quantum dot.

4.
Nano Lett ; 15(5): 2958-64, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25923197

ABSTRACT

We report the observation of an atomic like behavior from T = 4.2 K up to room temperature in n- and p-type Ω-gate silicon nanowire (NW) transistors. For that purpose, we modified the design of a NW transistor and introduced long spacers between the source/drain and the channel in order to separate the channel from the electrodes. The channel was made extremely small (3.4 nm in diameter with 10 nm gate length) with a thick gate oxide (7 nm) in order to enhance the Coulomb repulsion between carriers, which can be as large as 200 meV when surface roughness promotes charge confinement. Parasitic stochastic Coulomb blockade effect can be eliminated in our devices by choosing proper control voltages. Moreover, the quantum dot can be tuned so that the resonant current at T = 4.2 K exceeds that at room temperature.

5.
ACS Nano ; 6(4): 2940-7, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22404307

ABSTRACT

Charge transport across metal-semiconductor interfaces at the nanoscale is a crucial issue in nanoelectronics. Chains of semiconductor nanorods linked by Au particles represent an ideal model system in this respect, because the metal-semiconductor interface is an intrinsic feature of the nanosystem and does not manifest solely as the contact to the macroscopic external electrodes. Here we investigate charge transport mechanisms in all-inorganic hybrid metal-semiconductor networks fabricated via self-assembly in solution, in which CdSe nanorods were linked to each other by Au nanoparticles. Thermal annealing of our devices changed the morphology of the networks and resulted in the removal of small Au domains that were present on the lateral nanorod facets, and in ripening of the Au nanoparticles in the nanorod junctions with more homogeneous metal-semiconductor interfaces. In such thermally annealed devices the voltage dependence of the current at room temperature can be well described by a Schottky barrier lowering at a metal semiconductor contact under reverse bias, if the spherical shape of the gold nanoparticles is considered. In this case the natural logarithm of the current does not follow the square-root dependence of the voltage as in the bulk, but that of V(2/3). From our fitting with this model we extract the effective permittivity that agrees well with theoretical predictions for the permittivity near the surface of CdSe nanorods. Furthermore, the annealing improved the network conductance at cryogenic temperatures, which could be related to the reduction of the number of trap states.


Subject(s)
Gold/chemistry , Nanotubes/chemistry , Semiconductors , Cadmium Compounds/chemistry , Electric Conductivity , Electron Transport , Selenium Compounds/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...