Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 15(20): 4367-4374, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28474718

ABSTRACT

Structural integration of two synthetic water soluble receptors for Ca2+ and Mg2+, namely 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and o-aminophenol-N,N,O-triacetic acid (APTRA), respectively, gave novel di- and tritopic ionophores (1 and 2). As Mg2+ and Ca2+ cannot be simultaneously complexed by the receptors, allosteric control of complexation results. Potentiometric measurements established stepwise protonation constants and showed high affinity for Ca2+ (log K = 6.08 and 8.70 for 1 and 2, respectively) and an excellent selectivity over Mg2+ (log K = 3.70 and 5.60 for 1 and 2, respectively), which is compatible with magnesium-calcium ion exchange. While ion-exchange of a single Mg2+ for a single Ca2+ is possible in both 1 and 2, the simultaneous binding of two Mg2+ by 2 appears prohibitive for replacement of these two ions by a single Ca2+. Ion-binding and exchange was further rationalized by DFT calculations.

2.
Chem Commun (Camb) ; 47(1): 325-7, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-20730204

ABSTRACT

Nanoconjugates composed of CdSe-ZnS core-shell nanocrystals and pyrenyl ligands are shown to exhibit a double photoluminescence. Owing to the different response of the two emission signals towards oxygen, the nanocrystals function as high dynamic range ratiometric luminescent O(2) nanosensors.


Subject(s)
Luminescence , Oxygen/analysis , Quantum Dots , Cadmium Compounds/chemistry , Electrodes , Ligands , Nanoparticles/chemistry , Selenium Compounds/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry
3.
Chem Soc Rev ; 39(2): 506-15, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20111775

ABSTRACT

A strategy to manage energy, following light absorption, and modulate excited-state properties, including luminescence lifetimes of multicomponent photoactive systems, is presented. The intervening mechanism, which is illustrated through the use of bi-/multi-chromophoric molecules, relies on energy shuttling between different matched chromophores under kinetic and thermodynamic control. This tutorial review is destined to show supramolecular and materials chemists, spectroscopists and nanoscientists how to harness reversible electronic energy transfer in a predictable fashion in designer molecule-based systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...