Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 67(5): 2166-71, 1999 May.
Article in English | MEDLINE | ID: mdl-10225870

ABSTRACT

Previously we demonstrated that recombinant murine interleukin-12 (rmIL-12) administration can promote a primary Th1 response while suppressing the Th2 response in mice primed with 2,4, 6-trinitrophenyl-keyhole limpet hemocyanin (TNP-KLH). The present studies examined the capacity of rmIL-12 to drive a Th1 response to TNP-KLH in the presence of an ongoing Th2-mediated disease. To establish a distinct Th2 response, we used a murine model of leishmaniasis. Susceptible BALB/c mice produce a strong Th2 response when infected with Leishmania major and develop progressive visceral disease. On day 26 postinfection, when leishmaniasis was well established, groups of mice were immunized with TNP-KLH in the presence or absence of exogenous rmIL-12. Even in the presence of overt infection, TNP-KLH-plus-rmIL-12-immunized mice were still capable of generating KLH-specific gamma interferon (IFN-gamma) as well as corresponding TNP-specific immunoglobulin G2a (IgG2a) titers. In addition, the KLH-specific IL-4 was suppressed in infected mice immunized with rmIL-12. However, parasite-specific IL-4 and IgG1 production with a lack of parasite-specific IFN-gamma secretion were maintained in all infected groups of mice including those immunized with rmIL-12. These data show that despite the ongoing infection-driven Th2 response, rmIL-12 was capable of generating an antigen-specific Th1 response to an independent immunogen. Moreover, rmIL-12 administered with TNP-KLH late in infection did not alter the parasite-specific cytokine or antibody responses.


Subject(s)
Interleukin-12/pharmacology , Th1 Cells/immunology , Th2 Cells/immunology , Animals , Cytokines/biosynthesis , Female , Haptens , Hemocyanins/immunology , Immunoglobulin G/blood , Interferon-gamma/biosynthesis , Interleukin-4/biosynthesis , Leishmania major , Leishmaniasis, Cutaneous/immunology , Mice , Mice, Inbred BALB C , Recombinant Proteins/pharmacology
2.
J Immunol ; 160(1): 284-92, 1998 Jan 01.
Article in English | MEDLINE | ID: mdl-9551982

ABSTRACT

Studies on murine candidiasis suggest that resistance to disease is linked to a Th1 response and production of IFN-gamma, while failure to elicit protection is associated with a Th2 response and production of IL-4 and IL-10. Experimental infection of C57BL/6 mice, IL-12 treatment of these mice, or both infection and IL-12 treatment resulted in a characteristic Th1 cytokine mRNA profile as measured by quantitative competitive PCR. Specifically, little or no IL-4 transcripts were detected, while IFN-gamma message was elevated, particularly with IL-12 treatment. Despite its role in driving increased IFN-gamma expression and production, IL-12 treatment, paradoxically, promoted disease progression in our model. Therefore, we examined the effect of IFN-gamma neutralization on IL-12-induced susceptibility to infection. None of the systemically infected mice receiving IL-12 alone survived, while IL-12- and anti-IFN-gamma-treated mice had a 70% survival rate, similar to that after infection alone. These results suggested that IFN-gamma induced by IL-12 treatment contributed to lethality. However, in separate studies, IFN-gamma knockout mice were more susceptible to infection than their wild-type counterparts, suggesting that IFN-gamma is required for resistance. Nonetheless, infected IFN-gamma knockout mice treated with recombinant murine IL-12 exhibited enhanced resistance, suggesting that the toxicities observed with IL-12 are directly attributable to IFN-gamma and that an optimal immune response to Candida infections necessitates a finely tuned balance of IFN-gamma production. Thus, we propose that although IFN-gamma can drive resistance, the overproduction of IFN-gamma during candidiasis, mediated by IL-12 administration, leads to enhanced susceptibility.


Subject(s)
Candidiasis/immunology , Immunity, Cellular , Interferon-gamma/pharmacology , Interleukin-12/physiology , Animals , Candida albicans , DNA, Complementary/genetics , Female , Interleukin-10/metabolism , Interleukin-12/pharmacology , Interleukin-4/metabolism , Kidney/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Recombinant Proteins , Spleen/immunology , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...