Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 22(28): 285602, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21642758

ABSTRACT

A novel photochemical synthesis of size-controlled gold nanoparticles was reliably accomplished via both a direct reduction and a seeded-growth method at room temperature under the irradiation of fluorescent light. These methods utilized the intensity of fluorescent light that closely resembles daily sunlight (∼100 mW cm(-2)). This effectively allowed for the formation of gold nanoparticles with tunable sizes simply by controlling the concentration of trisodium citrate and gold chloride. The broad band fluorescent light was found to be an efficient source for inducing the formation of gold nanoparticles at ambient conditions. The size distribution and absorption property of the resulting nanoparticles were thoroughly characterized by scanning/transmission electron microscopy, dynamic light scattering, UV-visible spectroscopy and powder x-ray diffraction. This photochemical synthesis demonstrates, for the first time, the reliable preparation of gold nanoparticles at room temperature upon irradiation with fluorescent light.

2.
J Nanosci Nanotechnol ; 11(1): 45-52, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21446405

ABSTRACT

This report describes simple synthetic strategies to prepare partially aggregated gold nanoparticles (GNPs) and their ability to produce photothermally-induced heating of an aqueous medium upon exposure to broadband light. The formation of various GNPs and their aggregates were accomplished in the absence of surfactants at room temperature. The morphologies, structures, and absorption properties of these GNPs were carefully characterized. Given that the resulting GNPs possessing strong and wide absorption bands fall in the most intense solar radiation spectrum, the photothermally-induced heating of water was examined in the presence of the GNPs via irradiation with a solar simulator (i.e., 100 mW/cm2; 1-sun condition). Our GNPs exhibited a slightly greater increase in the water temperature (3-4 degrees C) than that of conventional citrate-stabilized GNPs. This superior photothermal heating property of our GNPs directly indicated that the intense and broad absorption band effectively improved the conversion of highly absorbed photon energy into heat.

SELECTION OF CITATIONS
SEARCH DETAIL
...