Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
Biomolecules ; 14(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38927049

ABSTRACT

We recently reported the potential application of recombinant prothrombin activator ecarin (RAPClot™) in blood diagnostics. In a new study, we describe RAPClot™ as an additive to develop a novel blood collection prototype tube that produces the highest quality serum for accurate biochemical analyte determination. The drying process of the RAPClot™ tube generated minimal effect on the enzymatic activity of the prothrombin activator. According to the bioassays of thrombin activity and plasma clotting, γ-radiation (>25 kGy) resulted in a 30-40% loss of the enzymatic activity of the RAPClot™ tubes. However, a visual blood clotting assay revealed that the γ-radiation-sterilized RAPClot™ tubes showed a high capacity for clotting high-dose heparinized blood (8 U/mL) within 5 min. This was confirmed using Thrombelastography (TEG), indicating full clotting efficiency under anticoagulant conditions. The storage of the RAPClot™ tubes at room temperature (RT) for greater than 12 months resulted in the retention of efficient and effective clotting activity for heparinized blood in 342 s. Furthermore, the enzymatic activity of the RAPClot™ tubes sterilized with an electron-beam (EB) was significantly greater than that with γ-radiation. The EB-sterilized RAPClot™ tubes stored at RT for 251 days retained over 70% enzyme activity and clotted the heparinized blood in 340 s after 682 days. Preliminary clinical studies revealed in the two trials that 5 common analytes (K, Glu, lactate dehydrogenase (LD), Fe, and Phos) or 33 analytes determined in the second study in the γ-sterilized RAPClot™ tubes were similar to those in commercial tubes. In conclusion, the findings indicate that the novel RAPClot™ blood collection prototype tube has a significant advantage over current serum or lithium heparin plasma tubes for routine use in measuring biochemical analytes, confirming a promising application of RAPClot™ in clinical medicine.


Subject(s)
Recombinant Proteins , Humans , Blood Coagulation/drug effects , Serum/chemistry , Serum/metabolism , Thromboplastin/metabolism , Blood Specimen Collection/methods , Thrombelastography/methods , Gamma Rays , Anticoagulants/pharmacology , Anticoagulants/chemistry
2.
Neurobiol Dis ; 199: 106562, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876322

ABSTRACT

Ataxia Telangiectasia (AT) is a rare disorder caused by mutations in the ATM gene and results in progressive neurodegeneration for reasons that remain poorly understood. In addition to its central role in nuclear DNA repair, ATM operates outside the nucleus to regulate metabolism, redox homeostasis and mitochondrial function. However, a systematic investigation into how and when loss of ATM affects these parameters in relevant human neuronal models of AT was lacking. We therefore used cortical neurons and brain organoids from AT-patient iPSC and gene corrected isogenic controls to reveal levels of mitochondrial dysfunction, oxidative stress, and senescence that vary with developmental maturity. Transcriptome analyses identified disruptions in regulatory networks related to mitochondrial function and maintenance, including alterations in the PARP/SIRT signalling axis and dysregulation of key mitophagy and mitochondrial fission-fusion processes. We further show that antioxidants reduce ROS and restore neurite branching in AT neuronal cultures, and ameliorate impaired neuronal activity in AT brain organoids. We conclude that progressive mitochondrial dysfunction and aberrant ROS production are important contributors to neurodegeneration in AT and are strongly linked to ATM's role in mitochondrial homeostasis regulation.

3.
Biomolecules ; 12(11)2022 11 17.
Article in English | MEDLINE | ID: mdl-36421717

ABSTRACT

We describe here the purification and cloning of a codon-optimized form of the snake prothrombin activator ecarin from the saw scaled viper (Echis carinatus) expressed in mammalian cells. Expression of recombinant ecarin (rEcarin) was carried out in human embryonic kidney cells (HEK) cells under conditions for the development and performance of a novel and scalable recombinant snake ecarin to industry standards. Clotting performance of the rEcarin was established in recalcified citrated whole blood, plasma, and fresh whole blood and found to be comparable to native ecarin (N-Ecarin). Furthermore, hemolysis was observed with N-Ecarin at relatively high doses in both recalcified citrated and fresh whole blood, while clotting was not observed with rEcarin, providing an important advantage for the recombinant form. In addition, rEcarin effectively clotted both recalcified citrated whole blood and fresh whole blood containing different anticoagulants including heparin, warfarin, dabigatran, Fondaparinux, rivaroxaban and apixaban, forming firm clots in the blood collection tubes. These results demonstrate that rEcarin efficiently clots normal blood as well as blood spiked with high concentrations of anticoagulants and has great potential as an additive to blood collection tubes to produce high quality serum for analyte analysis in diagnostic medicine.


Subject(s)
Endopeptidases , Prothrombin , Thrombosis , Viper Venoms , Animals , Humans , Anticoagulants/pharmacology , Prothrombin/metabolism , Snakes , Thromboplastin , Viper Venoms/pharmacology , Endopeptidases/pharmacology
4.
Adv Healthc Mater ; 11(15): e2200574, 2022 08.
Article in English | MEDLINE | ID: mdl-35652565

ABSTRACT

Uncontrolled bleeding from traumatic injury remains the leading cause of preventable death with loss of balance between blood clotting (coagulation) and blood clot breakdown (fibrinolysis). A major limitation of existing hemostatic agents is that they require a functioning clotting system to control the bleeding and are largely based on gauze delivery scaffolds. Herein, a novel rapid wound sealant, composed of two recombinant snake venom proteins, the procoagulant ecarin, to rapidly initiate blood clotting and the antifibrinolytic textilinin, to prevent blood clot breakdown within a synthetic thermoresponsive hydrogel scaffold is developed. In vitro, it is demonstrated that clotting is rapidly initiated with only nanomolar concentrations of venom protein and clot breakdown is effectively inhibited by textilinin. A stable clot is formed within 60 s compared to normal clot formation in 8 min. In vivo studies reveal that the snake venom hydrogel rapidly controls warfarin-induced bleeding, reducing the bleed volume from 48% to 12% and has demonstrated immune compatibility. A new class of hemostatic agents that achieve formation of rapid and stable blood clots even in the presence of blood thinners is demonstrated here.


Subject(s)
Hemostatics , Hydrogels , Blood Coagulation , Fibrinolysis , Hemorrhage/drug therapy , Hemostatics/pharmacology , Hemostatics/therapeutic use , Humans , Hydrogels/pharmacology , Snake Venoms/pharmacology
5.
Ageing Res Rev ; 79: 101653, 2022 08.
Article in English | MEDLINE | ID: mdl-35644374

ABSTRACT

Ataxia-telangiectasia (A-T) is caused by absence of the catalytic activity of ATM, a protein kinase that plays a central role in the DNA damage response, many branches of cellular metabolism, redox and mitochondrial homeostasis, and cell cycle regulation. A-T is a complex disorder characterized mainly by progressive cerebellar degeneration, immunodeficiency, radiation sensitivity, genome instability, and predisposition to cancer. It is increasingly recognized that the premature aging component of A-T is an important driver of this disease, and A-T is therefore an attractive model to study the aging process. This review outlines the current state of knowledge pertaining to the molecular and cellular signatures of aging in A-T and proposes how these new insights can guide novel therapeutic approaches for A-T.


Subject(s)
Aging, Premature , Aging , Ataxia Telangiectasia , Aging/genetics , Aging/metabolism , Aging, Premature/genetics , Aging, Premature/metabolism , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/genetics , DNA Damage , Genomic Instability , Humans
6.
Environ Toxicol ; 37(8): 2019-2032, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35499148

ABSTRACT

Silica dust particles are representative of air pollution and long-term inhalation of silicon-containing dust through the respiratory tract can cause pulmonary fibrosis. Epithelial-mesenchymal transformation (EMT) plays an important role in the development of fibrosis. This process can relax cell-cell adhesion complexes and enhance cell migration and invasion properties of these cells. Dysregulation of microRNA-34c (miR-34c) is highly correlated with organ fibrosis including pulmonary fibrosis. In this study, we found that miR-34c-5p could alleviate the occurrence and development of silica-mediated EMT. Fos-related antigen 1 was identified as a functional target of miR-34c-5p by bioinformatics analysis and the dual luciferase gene reporting assay. Importantly, chemically induced up-regulation of hsa-miR-34c-5p correlated inversely with the expression of Fra-1 and further exploration found that the miR-34c-5p/Fra-1 axis inhibits the activation of the phosphatase and tensin homolog deleted on chromosome 10/phosphatidylinositol-4,5-bisphosphate3-kinase/protein kinase B (PTEN/PI3K/AKT) signaling pathway. In addition, through interaction with PTEN/p53 it inhibits the proliferation and migration of human bronchial epithelial cells stimulated by silica, and promotes cell apoptosis, thereby preventing EMT. This finding provides a promising biomarker for the diagnosis and prognosis of pulmonary fibrosis. Furthermore, overexpression of miR-34c-5p represents a potential therapeutic approach.


Subject(s)
MicroRNAs , Pulmonary Fibrosis , Cell Proliferation/genetics , Dust , Epithelial-Mesenchymal Transition/genetics , Fibrosis , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-fos , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Signal Transduction/genetics , Silicon Dioxide/toxicity , Tumor Suppressor Protein p53/metabolism
8.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35042798

ABSTRACT

Mutations in the SETX gene, which encodes Senataxin, are associated with the progressive neurodegenerative diseases ataxia with oculomotor apraxia 2 (AOA2) and amyotrophic lateral sclerosis 4 (ALS4). To identify the causal defect in AOA2, patient-derived cells and SETX knockouts (human and mouse) were analyzed using integrated genomic and transcriptomic approaches. A genome-wide increase in chromosome instability (gains and losses) within genes and at chromosome fragile sites was observed, resulting in changes to gene-expression profiles. Transcription stress near promoters correlated with high GCskew and the accumulation of R-loops at promoter-proximal regions, which localized with chromosomal regions where gains and losses were observed. In the absence of Senataxin, the Cockayne syndrome protein CSB was required for the recruitment of the transcription-coupled repair endonucleases (XPG and XPF) and RAD52 recombination protein to target and resolve transcription bubbles containing R-loops, leading to genomic instability. These results show that transcription stress is an important contributor to SETX mutation-associated chromosome fragility and AOA2.


Subject(s)
Chromosomal Instability/genetics , DNA Helicases/metabolism , Multifunctional Enzymes/metabolism , RNA Helicases/metabolism , Spinocerebellar Ataxias/congenital , Animals , Apraxias/genetics , Ataxia/genetics , Cell Line , Cerebellar Ataxia/genetics , DNA Helicases/genetics , DNA Repair/genetics , Gene Expression Profiling/methods , Genomic Instability/genetics , Genomics/methods , Humans , Mice , Mouse Embryonic Stem Cells , Multifunctional Enzymes/genetics , Mutation/genetics , Neurodegenerative Diseases/genetics , Primary Cell Culture , Promoter Regions, Genetic/genetics , RNA Helicases/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/physiopathology , Transcriptome/genetics
9.
Environ Toxicol ; 37(3): 385-400, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34766707

ABSTRACT

The mechanism of the sterile inflammatory response in the respiratory tract induced by exposure to sterile particles has not been fully elucidated. The aim of our study is to explore the earlier events in initiating inflammatory response at molecular and cellular level in primary cultured human airway epithelial cells (AEC) exposed to silica particles in order to provide information for earlier diagnosis and prevention of silica particle-induced toxicity as well as possible information on the genesis of silicosis. We isolated primary AEC from three healthy adults and treated them with silica particles at different concentrations for 48 h. We found evidence for silica-induced inflammasome activation by the co-localization of Caspase-1 and NLRP3, as well as increased levels of IL-1ß and IL-18. Lactate dehydrogenase and NucGreen analysis proved the occurrence of pyroptosis. High throughput mRNA sequencing showed that the inflammatory response and NF-κB signaling pathways were significantly enriched in gene ontology and Kyoto encyclopedia of genes and genomes analysis, and pyroptosis-related genes were up-regulated. The miR-455-3p and five lncRNAs (LOC105375913, NEAT1, LOC105375181, LOC100506098, and LOC105369370) were verified as key factors related to the mechanism by ceRNA network analysis. LOC105375913 was first discovered to be associated with inflammation in AEC. These data suggest that microcrystalline silica can induce significant inflammation and pyroptosis in human primary AEC through NLRP3 inflammasome pathway and NF-κB signaling pathway at both the gene and protein levels, and the possible mechanism could be miR-455-3p mediated ceRNA hypothesis. Our data provide a method for the studies of the respiratory toxicity of fine particulate matter and the pathogenesis of early silicosis. The miR-455-3p and five lncRNAs related ceRNA network might be the toxicity mechanism of microcrystalline silica particles to AEC.


Subject(s)
MicroRNAs , Pyroptosis , Epithelial Cells , Humans , Inflammasomes/genetics , MicroRNAs/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Respiratory System , Silicon Dioxide/toxicity
10.
Neuron ; 109(24): 3897-3900, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34914915

ABSTRACT

Mutations in genes that function in nucleic metabolism have been shown to be linked to Aicardi-Goutières syndrome. In this issue of Neuron, Aditi et al. (2021) provide evidence that DNA damage-dependent signaling rather than type I interferon signaling underlies neurodegeneration in this class of neurodevelopmental/neuroinflammatory disease.


Subject(s)
Autoimmune Diseases of the Nervous System , Nervous System Malformations , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/physiopathology , DNA Damage , Humans , Mutation , Nervous System Malformations/genetics
11.
Stem Cell Res ; 56: 102528, 2021 10.
Article in English | MEDLINE | ID: mdl-34507142

ABSTRACT

Ataxia Telangiectasia is a rare autosomal recessive disorder caused by a mutated ATM gene. The most debilitating symptom of Ataxia Telangiectasia is the progressive neurodegeneration of the cerebellum, though the molecular mechanisms driving this degeneration remains unclear. Here we describe the generation and validation of an induced pluripotent stem cell (iPSC) line from an olfactory biopsy from a patient with Ataxia Telangiectasia. Sequencing identified two previously unreported disease-causing mutations in the ATM gene. This line can be used to generate 2D and 3D patient-specific neuronal models enabling investigations into the mechanisms underlying neurodegeneration.


Subject(s)
Ataxia Telangiectasia , Induced Pluripotent Stem Cells , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Biopsy , Humans , Mutation/genetics
12.
Front Pharmacol ; 12: 719589, 2021.
Article in English | MEDLINE | ID: mdl-34434111

ABSTRACT

Long-term exposure to crystalline silica particles leads to silicosis characterized by persistent inflammation and progressive fibrosis in the lung. So far, there is no specific treatment to cure the disease other than supportive care. In this study, we examined the effects of metformin, a prescribed drug for type || diabetes on silicosis and explored the possible mechanisms in an established rat silicosis model in vivo, and an in vitro co-cultured model containing human macrophages cells (THP-1) and human bronchial epithelial cells (HBEC). Our results showed that metformin significantly alleviated the inflammation and fibrosis of lung tissues of rats exposed to silica particles. Metformin significantly reduced silica particle-induced inflammatory cytokines including transforming growth factor-ß1 (TGF-ß1), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in rat lung tissue and HBEC culture supernatant. The protein levels of Vimentin and α-smooth muscle actin (α-SMA) were significantly decreased by metfomin while expression level of E-cadherin (E-Cad) increased. Besides, metformin increased the expression levels of phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK), microtubule-associated protein (MAP) light chain 3B (LC3B) and Beclin1 proteins, and reduced levels of phosphorylated mammalian target of rapamycin (p-mTOR) and p62 proteins in vivo and in vitro. These results suggest that metformin could inhibit silica-induced pulmonary fibrosis by activating autophagy through the AMPK-mTOR pathway.

13.
Exp Ther Med ; 21(4): 297, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33717240

ABSTRACT

Oxidative stress and the inflammatory response are two important mechanisms of silica-induced lung injury. Hesperetin (HSP) is a natural flavonoid compound that is found in citrus fruits and has been indicated to exhibit strong antioxidant and anti-inflammatory properties. The current study evaluated the protective effect of HSP on lung injury in rats exposed to silica. The results indicated that the degree of alveolitis and pulmonary fibrosis in the HSP-treated group was significantly decreased compared with the silica model group. The content of hydroxyproline (HYP) was also revealed to decrease overall in the HSP treated group compared with the silica model group, indicating that the degree of pulmonary fibrosis was decreased compared with the silica model group. The present study also demonstrated that HSP reduced oxidation levels of malondialdehyde (MDA) and increased the activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-PX). Total antioxidant capacity (T-AOC) was also increased following HSP treatment, indicating that HSP can alleviate oxidative stress in the lung tissue of silica-exposed rats. In addition, HSP was revealed to inhibit the synthesis and secretion of fibrogenic factor TGF-ß1, reduce the production of pro-inflammatory cytokines IL-1ß, IL-4, TNF-α and increase the levels of anti-inflammatory factors IFN-γ and IL-10. The current study demonstrated that HSP can effectively attenuate silica-induced lung injury by reducing oxidative damage and the inflammatory response.

14.
iScience ; 24(1): 101972, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33437944

ABSTRACT

There is evidence that ATM mutated in ataxia-telangiectasia (A-T) plays a key role in protecting against mitochondrial dysfunction, the mechanism for which remains unresolved. We demonstrate here that ATM-deficient cells are exquisitely sensitive to nutrient deprivation, which can be explained by defective cross talk between the endoplasmic reticulum (ER) and the mitochondrion. Tethering between these two organelles in response to stress was reduced in cells lacking ATM, and consistent with this, Ca2+ release and transfer between ER and mitochondria was reduced dramatically when compared with control cells. The impact of this on mitochondrial function was evident from an increase in oxygen consumption rates and a defect in mitophagy in ATM-deficient cells. Our findings reveal that ER-mitochondrial connectivity through IP3R1-GRP75-VDAC1, to maintain Ca2+ homeostasis, as well as an abnormality in mitochondrial fusion defective in response to nutrient stress, can account for at least part of the mitochondrial dysfunction observed in A-T cells.

15.
Int Immunopharmacol ; 91: 107277, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33352442

ABSTRACT

Silicosis is a fatal pulmonary disease caused by the inhalation of silica dust, and characterized by inflammation and fibrosis of the lung, with no effective treatment to date. Here we investigate the effect of emodin, an anthraquinone derivative isolated from rhubarb using a mouse silicosis model and in vitro cultured human macrophages and alveolar epithelial cells. Results from histological examination indicated that emodin reduced the degree of alveolitis and fibrosis in the lungs of mice exposed to silica particles. We also demonstrated that emodin effectively inhibited the phosphorylation of Smad3 and NF-κB and reduced the levels of inflammatory factors in the lung tissue of mice treated with silica particles. In addition, we found that emodin inhibited apoptosis and demonstrated an anti-fibrotic effect by down-regulating the pro-apoptotic protein Bax and up-regulating the anti-apoptotic protein Bcl-2. Furthermore, emodin increased E-cadherin levels, reduced the expression of Vimentin, α-SMA and Col-I, as well as pro-inflammatory factors TGF-ß1, TNF-α and IL-1ß in vivo and in vitro. These results suggested that emodin can regulate epithelial-mesenchymal transition (EMT) through the inhibition of the TGF-ß1/Smad3 signaling pathway and the NF-κB signaling pathway to prevent alveolar inflammation and apoptotic process. Overall, this study showed that emodin can alleviate pulmonary fibrosis in silicosis through regulating the inflammatory response and fibrotic process at multiple levels.


Subject(s)
Acute Lung Injury/prevention & control , Apoptosis/drug effects , Emodin/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Pneumonia/prevention & control , Pulmonary Alveoli/drug effects , Pulmonary Fibrosis/prevention & control , Silicosis/prevention & control , A549 Cells , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Anti-Inflammatory Agents/metabolism , Apoptosis Regulatory Proteins/metabolism , Coculture Techniques , Disease Models, Animal , Humans , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred C57BL , Pneumonia/chemically induced , Pneumonia/metabolism , Pneumonia/pathology , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Signal Transduction , Silicon Dioxide , Silicosis/metabolism , Silicosis/pathology , THP-1 Cells
16.
J Leukoc Biol ; 109(3): 593-603, 2021 03.
Article in English | MEDLINE | ID: mdl-32829531

ABSTRACT

The innate immune response to LPS is highly dynamic yet tightly regulated. The majority of studies of gene expression have focussed on transcription. However, it is also important to understand how post-transcriptional pathways are regulated in response to inflammatory stimuli as the rate of RNA degradation relative to new transcription is important for overall expression. RNA decay pathways include nonsense-mediated decay, the RNA decay exosome, P-body localized deadenylation, decapping and degradation, and AU-rich element targeted decay mediated by tristetraprolin. Here, bone marrow-derived Mϕs were treated with LPS over a time course of 0, 2, 6, and 24 h and the transcriptional profiles were analyzed by RNA sequencing. The data show that components of RNA degradation pathways are regulated during an LPS response. Processing body associated decapping enzyme DCP2 and regulatory subunit DCP1A, and 5' exonuclease XRN1 and sequence specific RNA decay pathways were upregulated. Nonsense mediated decay was also increased in response to LPS induced signaling, initially by increased activation and at later timepoints at the mRNA and protein levels. This leads to increased nonsense mediated decay efficiency across the 24 h following LPS treatment. These findings suggest that LPS activation of Mϕs results in targeted regulation of RNA degradation pathways in order to change how subsets of mRNAs are degraded during an inflammatory response.


Subject(s)
Lipopolysaccharides/pharmacology , Macrophages/metabolism , RNA Stability/drug effects , Animals , Gene Expression Regulation/drug effects , Macrophages/drug effects , Mice, Inbred C57BL , Proteins/metabolism , RNA Stability/genetics , Reproducibility of Results , Sequence Analysis, RNA
17.
Article in English | MEDLINE | ID: mdl-32602269

ABSTRACT

As a consequence of recent progression in biomedicine and nanotechnology, nanomedicine has emerged rapidly as a new discipline with extensive application of nanomaterials in biology, medicine, and pharmacology. Among the various nanomaterials, silica nanoparticles (SNPs) are particularly promising in nanomedicine applications due to their large specific surface area, adjustable pore size, facile surface modification, and excellent biocompatibility. This paper reviews the synthesis of SNPs and their recent usage in drug delivery, biomedical imaging, photodynamic and photothermal therapy, and other applications. In addition, the possible adverse effects of SNPs in nanomedicine applications are reviewed from reported in vitro and in vivo studies. Finally, the potential opportunities and challenges for the future use of SNPs are discussed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Subject(s)
Nanoparticles , Pharmaceutical Preparations , Drug Delivery Systems , Nanomedicine , Nanotechnology , Silicon Dioxide
18.
Toxins (Basel) ; 12(11)2020 10 26.
Article in English | MEDLINE | ID: mdl-33114591

ABSTRACT

Venoms act with remarkable specificity upon a broad diversity of physiological targets. Venoms are composed of proteins, peptides, and small molecules, providing the foundation for the development of novel therapeutics. This study assessed the effect of venom from the red-bellied black snake (Pseudechis porphyriacus) on human primary leukocytes using bead-based flow cytometry, mixed lymphocyte reaction, and cell viability assays. We show that venom treatment had a significant immunosuppressive effect, inhibiting the secretion of interleukin (IL)-2 and tumor necrosis factor (TNF) from purified human T cells by 90% or greater following stimulation with mitogen (phorbol 12-myristate 13-acetate and ionomycin) or via cluster of differentiation (CD) receptors, CD3/CD28. In contrast, venom treatment did not inhibit TNF or IL-6 release from antigen-presenting cells stimulated with lipopolysaccharide. The reduced cytokine release from T cells was not associated with inhibition of T cell proliferation or reduction of cell viability, consistent with an anti-inflammatory mechanism unrelated to the cell cycle. Deconvolution of the venom using reverse-phase HPLC identified four fractions responsible for the observed immunosuppressive activity. These data suggest that compounds from P. porphyriacus venom may be potential drug leads for T cell-associated conditions such as graft versus host disease, rheumatoid arthritis, and inflammatory bowel disease.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Elapid Venoms/pharmacology , Immunosuppressive Agents/pharmacology , Animals , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , Cytokines/immunology , Elapidae , Humans , Lipopolysaccharides/pharmacology
19.
Anal Biochem ; 608: 113907, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32814078

ABSTRACT

Snake venom prothrombin activators such as Ecarin are readily assayed by continuous spectrophotometric monitoring of p-nitroaniline production in a one step assay containing prothrombin and a p-nitroanilide peptide substrate for thrombin. The coupled reactions result in accelerating p-nitroaniline (pNA) production over the course of the assay giving non-linear progress curves, from which initial velocities are not readily obtained. Most studies therefore resort to approximate estimates of activity, based on the absorbance reached at an arbitrary time. A simple kinetic analysis of the coupled reactions shows that the early points of such curves should be fitted by second order polynomials, representing the accelerating reaction rate in µmol pNA/min/min. The first derivative of the polynomial then gives the increasing velocity of pNA production in µmol pNA/min over the time course of the assay. We demonstrate here that, with the substrate S2238, these rates can be converted to absolute thrombin concentrations using the Michaelis-Menten equation, substituted with values for kcat and Km. These thrombin concentrations increase linearly over the time course of the assay allowing the activity to be expressed in units, defined as µmol product/min, most commonly used to report enzyme activity.


Subject(s)
Chromogenic Compounds/chemistry , Dipeptides/chemistry , Endopeptidases/analysis , Enzyme Assays/methods , Aniline Compounds/chemistry , Animals , Humans , Hydrolysis , Kinetics , Limit of Detection , Linear Models , Prothrombin/chemistry , Reference Standards , Reproducibility of Results , Thrombin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...