Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Immunohorizons ; 3(8): 378-388, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31399487

ABSTRACT

C-reactive protein (CRP) is recognized as a biomarker of chronic, low-grade inflammation associated with vascular disorders. Lately, the role of neutrophils and neutrophil extracellular traps (NETs) has been investigated as a potential source of chronic inflammation and cardiovascular complications. This study investigated NETs as a marker of inflammation in patients with symptomatic heart failure (HF) with or without type 2 diabetes (T2DM) and examined the correlation between NETs and CRP. We performed a noninterventional study including patients with HF with or without T2DM, T2DM, and a healthy control (HC) group. NETs and other inflammatory markers in serum were measured by ELISA. The release of NETs (NETosis) in vitro under various stimuli was measured by confocal microscopy. The levels of NETs in the serum of HF patients were significantly higher compared with HC (112%). Serum CRP concentrations were significantly increased in HF and HF plus T2DM patients compared with HC, and a positive correlation was observed between serum CRP and NETs levels. Neutrophils from HF and HF plus T2DM patients underwent in vitro NETs release faster than T2DM and HC without any stimuli. In vitro, serum collected from the HF and the HF plus T2DM group induced NETosis in healthy neutrophils significantly more when compared with HC and T2DM, which was prevented by depletion from CRP. We confirmed in vitro that CRP induces a concentration-dependent NETs synthesis. This study proposes a mechanism by which CRP increases the risk of future cardiovascular events and supports mounting evidences on the role of neutrophils in chronic low-grade inflammation associated with HF.


Subject(s)
C-Reactive Protein/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Extracellular Traps/metabolism , Heart Failure/complications , Heart Failure/metabolism , Aged , Biomarkers/metabolism , Cells, Cultured , Cytokines/blood , Female , Humans , Inflammation/blood , Male , Middle Aged , Neutrophils/metabolism , Prospective Studies , Signal Transduction
2.
J Immunol ; 200(11): 3801-3813, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29686052

ABSTRACT

Neutrophil extracellular traps (NETs) are composed of nuclear DNA in a web-like structure extruded from neutrophils in response to either bacterial infection or inflammation. We previously reported the expression of angiopoietin Tie2 receptor on human neutrophils and the capacity of both angiopoietins (Ang1 and Ang2) to induce proinflammatory activities, such as synthesis and release of platelet-activating factor, upregulation of ß2 integrin complex (CD11/CD18), and neutrophil chemotaxis. In contrast, only Ang1 but not Ang2 is capable of promoting translational and transcriptional activities in neutrophils. In this article, we addressed whether Ang1 and/or Ang2 could modulate the release of NETs and if they contribute to angiopoietin-mediated proinflammatory activities. We observed that Ang1 and Ang2, alone or combined (10 nM, 3 h), increase NET synthesis and release by ≈2.5-fold as compared with PBS-treated neutrophils. The release of NETs is Tie2 dependent and requires downstream intracellular participation of PI3K, p38, and p42/44 MAPK pathways; reactive oxygen species production; intracellular calcium store depletion; and protein arginine deiminase 4 activation. These isolated NETs induced neutrophil and endothelial cell activation, leading to neutrophil adhesion onto human extracellular matrix and HUVEC and in vitro formation of capillary-like tubes by endothelial cells. Our study reports the capacity of Ang1 and Ang2 to promote the release of NETs and that these NETs contribute to angiopoietin-mediated in vitro proinflammatory and proangiogenic activities.


Subject(s)
Angiopoietin-1/metabolism , Angiopoietin-2/metabolism , Extracellular Traps/metabolism , Inflammation/metabolism , Neutrophils/metabolism , CD18 Antigens/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Platelet Activating Factor/metabolism , Receptor, TIE-2/metabolism , Signal Transduction/physiology , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...