Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biosystems ; 226: 104888, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36997148

ABSTRACT

In this paper, we investigate the Casimir effect within a virus RNA, particularizing the study to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Then, we discuss the possibility of occurring damage or mutation in its genome due to the presence of quantum vacuum fluctuations inside and around the RNA ribbon. For this, we consider the geometry and the nontrivial topology of the viral RNA as having a simple helical structure. We initially compute the non-thermal Casimir energy associated to that geometry, considering boundary conditions that constrain the zero point oscillations of a massless scalar field to the cylindrical cavity containing a helix pitch of RNA ribbon. Then we extend the obtained result to the electromagnetic field and, following, we calculate the probability of occurring damage or mutation in RNA by using the normalized inverse exponential distribution, which suppresses very low energies, and consider cutoff (threshold) energies corresponding to UV-A and UV-C rays, surely responsible by mutations. Then, by taking into account UV-A, we arrive at a mutation rate per base per infection cycle, which in the case of the SARS-CoV-2 is non-negligible. We find a maximum value of this mutation rate for an RNA ribbon radius, applying it for SARS-CoV-2, in particular. We also calculate a characteristic longitudinal oscillation frequency for the helix pitch value corresponding to the local minimum of the Casimir energy. Finally, we consider thermal fluctuations of classical and quantum nature and show that the corresponding probability of mutation is completely negligible for that virus. Therefore, we conclude that only the nontrivial topology and the geometric attributes of the RNA molecule contribute to the possible mutations caused by quantum vacuum fluctuations in the viral genome.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Mutation , Mutation Rate , RNA, Viral/genetics , RNA, Viral/chemistry
2.
Phys Rev Lett ; 127(10): 106801, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34533367

ABSTRACT

The moiré pattern observed in stacked noncommensurate crystal lattices, such as heterobilayers of transition metal dichalcogenides, produces a periodic modulation of their band gap. Excitons subjected to this potential landscape exhibit a band structure that gives rise to a quasiparticle dubbed the moiré exciton. In the case of MoS_{2}/WSe_{2} heterobilayers, the moiré trapping potential has honeycomb symmetry and, consequently, the moiré exciton band structure is the same as that of a Dirac-Weyl fermion, whose mass can be further tuned down to zero with a perpendicularly applied field. Here we show that, analogously to other Dirac-like particles, the moiré exciton exhibits a trembling motion, also known as Zitterbewegung, whose long timescales are compatible with current experimental techniques for exciton dynamics. This promotes the study of the dynamics of moiré excitons in van der Waals heterostructures as an advantageous solid-state platform to probe Zitterbewegung, broadly tunable by gating and interlayer twist angle.

3.
J Phys Condens Matter ; 33(9): 095503, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33232944

ABSTRACT

The time evolution of a low-energy two-dimensional Gaussian wave packet in ABC-stacked n-layer graphene (ABC-NLG) is investigated. Expectation values of the position (x, y) of center-of-mass and the total probability densities of the wave packet are calculated analytically using the Green's function method. These results are confirmed using an alternative numerical method based on the split-operator technique within the Dirac approach for ABC-NLG, which additionally allows to include external fields and potentials. The main features of the zitterbewegung (trembling motion) of wave packets in graphene are demonstrated and are found to depend not only on the wave packet width and initial pseudospin polarization, but also on the number of layers. Moreover, the analytical and numerical methods proposed here allow to investigate wave packet dynamics in graphene systems with an arbitrary number of layers and arbitrary potential landscapes.

4.
J Phys Condens Matter ; 32(15): 155501, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31860873

ABSTRACT

The energy spectrum and local current patterns in graphene quantum dots (QD) are investigated for different geometries in the presence of an external perpendicular magnetic field. Our results demonstrate that, for specific geometries and edge configurations, the QD exhibits vortex and anti-vortex patterns in the local current density, in close analogy to the vortex patterns observed in the probability density current of semiconductor QD, as well as in the order parameter of mesoscopic superconductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...