Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000034

ABSTRACT

Non-membrane compartments or biomolecular condensates play an important role in the regulation of cellular processes including DNA repair. Here, an ability of XRCC1, a scaffold protein involved in DNA base excision repair (BER) and single-strand break repair, to form protein-rich microphases in the presence of DNA duplexes was discovered. We also showed that the gap-filling activity of BER-related DNA polymerase λ (Pol λ) is significantly increased by the presence of XRCC1. The stimulation of the Pol λ activity was observed only at micromolar XRCC1 concentrations, which were well above the nanomolar dissociation constant determined for the XRCC1-Pol λ complex and pointed to the presence of an auxiliary stimulatory factor in addition to protein-protein interactions. Indeed, according to dynamic light scattering measurements, the stimulation of the Pol λ activity by XRCC1 was coupled with microphase separation in a protein-DNA mixture. Fluorescence microscopy revealed colocalization of Pol λ, XRCC1, and gapped DNA within the microphases. Thus, stimulation of Pol λ activity is caused both by its interaction with XRCC1 and by specific conditions of microphase separation; this phenomenon is shown for the first time.


Subject(s)
DNA Polymerase beta , DNA Repair , X-ray Repair Cross Complementing Protein 1 , X-ray Repair Cross Complementing Protein 1/metabolism , X-ray Repair Cross Complementing Protein 1/genetics , DNA Polymerase beta/metabolism , Humans , DNA/metabolism , Protein Binding
2.
IUBMB Life ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963041

ABSTRACT

DNA-protein crosslinks (DPC) are common DNA lesions induced by various external and endogenous agents. One of the sources of DPC is the apurinic/apyrimidinic site (AP site) and proteins interacting with it. Some proteins possessing AP lyase activity form covalent complexes with AP site-containing DNA without borohydride reduction (suicidal crosslinks). We have shown earlier that tyrosyl-DNA phosphodiesterase 1 (TDP1) but not AP endonuclease 1 (APE1) is able to remove intact OGG1 from protein-DNA adducts, whereas APE1 is able to prevent the formation of DPC by hydrolyzing the AP site. Here we demonstrate that TDP1 can remove intact PARP2 but not XRCC1 from covalent enzyme-DNA adducts with AP-DNA formed in the absence of APE1. We also analyzed an impact of APE1 and TDP1 on the efficiency of DPC formation in APE1-/- or TDP1-/- cell extracts. Our data revealed that APE1 depletion leads to increased levels of PARP1-DNA crosslinks, whereas TDP1 deficiency has little effect on DPC formation.

3.
Biochemistry (Mosc) ; 89(6): 1014-1023, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38981697

ABSTRACT

Damages of various origin accumulated in the genomic DNA can lead to the breach of genome stability, and are considered to be one of the main factors involved in cellular senescence. DNA repair systems in mammalian cells ensure effective damage removal and repair of the genome structure, therefore, activity of these systems is expected to be correlated with high maximum lifespan observed in the long-lived mammals. This review discusses current results of the studies focused on determination of the DNA repair system activity and investigation of the properties of its key regulatory proteins in the cells of long-lived rodents and bats. Based on the works discussed in the review, it could be concluded that the long-lived rodents and bats in general demonstrate high efficiency in functioning and regulation of DNA repair systems. Nevertheless, a number of questions around the study of DNA repair in the cells of long-lived rodents and bats remain poorly understood, answers to which could open up new avenues for further research.


Subject(s)
Chiroptera , DNA Repair , Rodentia , Animals , Chiroptera/genetics , Chiroptera/metabolism , Rodentia/genetics , Rodentia/metabolism , DNA Damage , Longevity
4.
Biochemistry (Mosc) ; 89(4): 674-687, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38831504

ABSTRACT

Chromatin is an epigenetic platform for implementation of DNA-dependent processes. Nucleosome, as a basic level of chromatin compaction, largely determines its properties and structure. In the study of nucleosomes structure and functions physicochemical tools are actively used, such as magnetic and optical "tweezers", "DNA curtains", nuclear magnetic resonance, X-ray crystallography, and cryogenic electron microscopy, as well as optical methods based on Förster resonance energy transfer. Despite the fact that these approaches make it possible to determine a wide range of structural and functional characteristics of chromatin and nucleosomes with high spatial and time resolution, atomic force microscopy (AFM) complements the capabilities of these methods. The results of structural studies of nucleosome focusing on the AFM method development are presented in this review. The possibilities of AFM are considered in the context of application of other physicochemical approaches.


Subject(s)
Microscopy, Atomic Force , Nucleosomes , Nucleosomes/chemistry , Nucleosomes/ultrastructure , Nucleosomes/metabolism , Microscopy, Atomic Force/methods , Humans , DNA/chemistry , DNA/metabolism , Animals
5.
Biochim Biophys Acta Gen Subj ; 1868(7): 130616, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38621596

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a human DNA repair protein. It is a member of the phospholipase D family based on structural similarity. TDP1 is a key enzyme of the repair of stalled topoisomerase 1 (TOP1)-DNA complexes. Previously, with the CRISPR/Cas9 method, we obtained HEK293A cells with a homozygous knockout of the TDP1 gene and used the TDP1 knockout cells as a cellular model for studying mechanisms of action of an anticancer therapy. In the present work, we hypothesized that the TDP1 knockout would alter the expression of DNA repair-related genes. By transcriptomic analysis, we investigated for the first time the effect of the TDP1 gene knockout on genes' expression changes in the human HEK293A cell line. We obtained original data implying a role of TDP1 in other processes besides the repair of the DNA-TOP1 complex. Differentially expressed gene analysis revealed that TDP1 may participate in cell adhesion and communication, spermatogenesis, mitochondrial function, neurodegeneration, a cytokine response, and the MAPK signaling pathway.


Subject(s)
CRISPR-Cas Systems , Phosphoric Diester Hydrolases , Humans , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , HEK293 Cells , Gene Knockout Techniques/methods , Transcriptome/genetics , Gene Expression Profiling , DNA Repair/genetics
6.
Cells ; 13(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38391916

ABSTRACT

Base excision repair (BER) is the predominant pathway for the removal of most forms of hydrolytic, oxidative, and alkylative DNA lesions. The precise functioning of BER is achieved via the regulation of each step by regulatory/accessory proteins, with the most important of them being poly(ADP-ribose) polymerase 1 (PARP1). PARP1's regulatory functions extend to many cellular processes including the regulation of mRNA stability and decay. PARP1 can therefore affect BER both at the level of BER proteins and at the level of their mRNAs. Systematic data on how the PARP1 content affects the activities of key BER proteins and the levels of their mRNAs in human cells are extremely limited. In this study, a CRISPR/Cas9-based technique was used to knock out the PARP1 gene in the human HEK 293FT line. The obtained cell clones with the putative PARP1 deletion were characterized by several approaches including PCR analysis of deletions in genomic DNA, Sanger sequencing of genomic DNA, quantitative PCR analysis of PARP1 mRNA, Western blot analysis of whole-cell-extract (WCE) proteins with anti-PARP1 antibodies, and PAR synthesis in WCEs. A quantitative PCR analysis of mRNAs coding for BER-related proteins-PARP2, uracil DNA glycosylase 2, apurinic/apyrimidinic endonuclease 1, DNA polymerase ß, DNA ligase III, and XRCC1-did not reveal a notable influence of the PARP1 knockout. The corresponding WCE catalytic activities evaluated in parallel did not differ significantly between the mutant and parental cell lines. No noticeable effect of poly(ADP-ribose) synthesis on the activity of the above WCE enzymes was revealed either.


Subject(s)
DNA Repair , Excision Repair , Poly (ADP-Ribose) Polymerase-1 , Humans , Cell Extracts , Cell Line , X-ray Repair Cross Complementing Protein 1/genetics , Poly (ADP-Ribose) Polymerase-1/genetics
7.
Molecules ; 29(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338326

ABSTRACT

Deoxycholic acid derivatives containing various heterocyclic functional groups at C-3 on the steroid scaffold were designed and synthesized as promising dual tyrosyl-DNA phosphodiesterase 1 and 2 (TDP1 and TDP2) inhibitors, which are potential targets to potentiate topoisomerase poison antitumor therapy. The methyl esters of DCA derivatives with benzothiazole or benzimidazole moieties at C-3 demonstrated promising inhibitory activity in vitro against TDP1 with IC50 values in the submicromolar range. Furthermore, methyl esters 4d-e, as well as their acid counterparts 3d-e, inhibited the phosphodiesterase activity of both TDP1 and TDP2. The combinations of compounds 3d-e and 4d-e with low-toxic concentrations of antitumor drugs topotecan and etoposide showed significantly greater cytotoxicity than the compounds alone. The docking of the derivatives into the binding sites of TDP1 and TDP2 predicted plausible binding modes of the DCA derivatives.


Subject(s)
Phosphodiesterase Inhibitors , Phosphoric Diester Hydrolases , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/metabolism , Models, Molecular , Deoxycholic Acid/pharmacology , Structure-Activity Relationship
8.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279210

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an important DNA repair enzyme and one of the causes of tumor resistance to topoisomerase 1 inhibitors such as topotecan. Inhibitors of this Tdp1 in combination with topotecan may improve the effectiveness of therapy. In this work, we synthesized usnic acid derivatives, which are hybrids of its known derivatives: tumor sensitizers to topotecan. New compounds inhibit Tdp1 in the micromolar and submicromolar concentration range; some of them enhance the effect of topotecan on the metabolic activity of cells of various lines according to the MTT test. One of the new compounds (compound 7) not only sensitizes Krebs-2 and Lewis carcinomas of mice to the action of topotecan, but also normalizes the state of the peripheral blood of mice, which is disturbed in the presence of a tumor. Thus, the synthesized substances may be the prototype of a new class of additional therapy for cancer.


Subject(s)
Benzofurans , Carcinoma , Topotecan , Animals , Mice , Topotecan/pharmacology , Topotecan/therapeutic use , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Esterases
9.
Biochimie ; 219: 84-95, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37573020

ABSTRACT

Mammalian Base Excision Repair (BER) DNA ligases I and IIIα (LigI, LigIIIα) are major determinants of DNA repair fidelity, alongside with DNA polymerases. Here we compared activities of human LigI and LigIIIα on specific and nonspecific substrates representing intermediates of distinct BER sub-pathways. The enzymes differently discriminate mismatches in the nicked DNA, depending on their identity and position, but are both more selective against the 3'-end non-complementarity. LigIIIα is less active than LigI in premature ligation of one-nucleotide gapped DNA and more efficiently discriminates misinsertion products of DNA polymerase ß-catalyzed gap filling, that reinforces a leading role of LigIIIα in the accuracy of short-patch BER. LigI and LigIIIα reseal the intermediate of long-patch BER containing an incised synthetic AP site (F) with different efficiencies, depending on the DNA sequence context, 3'-end mismatch presence and coupling of the ligation reaction with DNA repair synthesis. Processing of this intermediate in the absence of flap endonuclease 1 generates non-canonical DNAs with bulged F site, which are very inefficiently repaired by AP endonuclease 1 and represent potential mutagenic repair products. The extent of conversion of the 5'-adenylated intermediates of specific and nonspecific substrates is revealed to depend on the DNA sequence context; a higher sensitivity of LigI to the sequence is in line with the enzyme structural feature of DNA binding. LigIIIα exceeds LigI in generation of potential abortive ligation products, justifying importance of XRCC1-mediated coordination of LigIIIα and aprataxin activities for the efficient DNA repair.


Subject(s)
DNA Polymerase beta , DNA Repair , Animals , Humans , DNA/genetics , DNA/metabolism , DNA Polymerase beta/genetics , DNA Polymerase beta/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA Ligases/genetics , DNA Ligases/metabolism , Excision Repair , Mammals/metabolism , X-ray Repair Cross Complementing Protein 1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism
10.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38069121

ABSTRACT

The spectrum of neurodegenerative diseases known today is quite extensive. The complexities of their research and treatment lie not only in their diversity. Even many years of struggle and narrowly focused research on common pathologies such as Alzheimer's, Parkinson's, and other brain diseases have not brought cures for these illnesses. What can be said about orphan diseases? In particular, Huntington's disease (HD), despite affecting a smaller part of the human population, still attracts many researchers. This disorder is known to result from a mutation in the HTT gene, but having this information still does not simplify the task of drug development and studying the mechanisms of disease progression. Nonetheless, the data accumulated over the years and their analysis provide a good basis for further research. Here, we review studies devoted to understanding the mechanisms of HD. We analyze genes and molecular pathways involved in HD pathogenesis to describe the action of repurposed drugs and try to find new therapeutic targets.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Humans , Drug Repositioning , Huntington Disease/drug therapy , Huntington Disease/genetics , Huntington Disease/metabolism , Drug Development , Huntingtin Protein/genetics , Mutation
11.
Biochemistry (Mosc) ; 88(11): 1844-1856, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38105203

ABSTRACT

Nucleotide excision repair (NER) is responsible for removing a wide variety of bulky adducts from DNA, thus contributing to the maintenance of genome stability. The efficiency with which proteins of the NER system recognize and remove bulky adducts depends on many factors and is of great clinical and diagnostic significance. The review examines current concepts of the NER system molecular basis in eukaryotic cells and analyzes methods for the assessment of the NER-mediated DNA repair efficiency both in vitro and ex vivo.


Subject(s)
DNA Damage , Excision Repair , DNA Repair , DNA/metabolism , Nucleotides
12.
PLoS One ; 18(11): e0294683, 2023.
Article in English | MEDLINE | ID: mdl-38019812

ABSTRACT

CRISPR/Cas9 system is а powerful gene editing tool based on the RNA-guided cleavage of target DNA. The Cas9 activity can be modulated by proteins involved in DNA damage signalling and repair due to their interaction with double- and single-strand breaks (DSB and SSB, respectively) generated by wild-type Cas9 or Cas9 nickases. Here we address the interplay between Streptococcus pyogenes Cas9 and key DNA repair factors, including poly(ADP-ribose) polymerase 1 (SSB/DSB sensor), its closest homolog poly(ADP-ribose) polymerase 2, Ku antigen (DSB sensor), DNA ligase I (SSB sensor), replication protein A (DNA duplex destabilizer), and Y-box binding protein 1 (RNA/DNA binding protein). None of those significantly affected Cas9 activity, while Cas9 efficiently shielded DSBs and SSBs from their sensors. Poly(ADP-ribosyl)ation of Cas9 detected for poly(ADP-ribose) polymerase 2 had no apparent effect on the activity. In cellulo, Cas9-dependent gene editing was independent of poly(ADP-ribose) polymerase 1. Thus, Cas9 can be regarded as an enzyme mostly orthogonal to the natural regulation of human systems of DNA break sensing and repair.


Subject(s)
CRISPR-Cas Systems , Poly(ADP-ribose) Polymerases , Humans , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , DNA Repair , DNA Damage , DNA/genetics , DNA/metabolism , DNA Breaks , RNA
13.
Cell Rep ; 42(10): 113199, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37804508

ABSTRACT

PARP-1 activation at DNA damage sites leads to the synthesis of long poly(ADP-ribose) (PAR) chains, which serve as a signal for DNA repair. Here we show that FUS, an RNA-binding protein, is specifically directed to PAR through its RNA recognition motif (RRM) to increase PAR synthesis by PARP-1 in HeLa cells after genotoxic stress. Using a structural approach, we also identify specific residues located in the FUS RRM, which can be PARylated by PARP-1 to control the level of PAR synthesis. Based on the results of this work, we propose a model in which, following a transcriptional arrest that releases FUS from nascent mRNA, FUS can be recruited by PARP-1 activated by DNA damage to stimulate PAR synthesis. We anticipate that this model offers new perspectives to understand the role of FET proteins in cancers and in certain neurodegenerative diseases such as amyotrophic lateral sclerosis.


Subject(s)
DNA Damage , Poly Adenosine Diphosphate Ribose , Poly(ADP-ribose) Polymerases , RNA-Binding Protein FUS , Humans , DNA Repair , HeLa Cells , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , RNA Recognition Motif , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism
14.
Genes (Basel) ; 14(10)2023 10 12.
Article in English | MEDLINE | ID: mdl-37895279

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1 and 2 (Tdp1 and Tdp2) are DNA repair enzymes that repair DNA damage caused by various agents, including anticancer drugs. Thus, these enzymes resist anticancer therapy and could be the reason for resistance to such widely used drugs such as topotecan and etoposide. In the present work, we found compounds capable of inhibiting both enzymes among derivatives of (-)-usnic acid. Both (+)- and (-)-enantiomers of compounds act equally effectively against Tdp1 with IC50 values in the range of 0.02-0.2 µM; only (-)-enantiomers inhibited Tdp2 with IC50 values in the range of 6-9 µM. Surprisingly, the compounds protect HEK293FT wild type cells from the cytotoxic effect of etoposide (CC50 3.0-3.9 µM in the presence of compounds and 2.4 µM the presence of DMSO) but potentiate it against Tdp2 knockout cells (CC50 1.2-1.6 µM in the presence of compounds against 2.3 µM in the presence of DMSO). We assume that the sensitizing effect of the compounds in the absence of Tdp2 is associated with the effective inhibition of Tdp1, which could take over the functions of Tdp2.


Subject(s)
Antineoplastic Agents , DNA-Binding Proteins , DNA-Binding Proteins/genetics , Etoposide , Dimethyl Sulfoxide , Phosphoric Diester Hydrolases/genetics , Antineoplastic Agents/pharmacology , DNA Repair Enzymes
15.
J Pharm Biomed Anal ; 236: 115731, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37741072

ABSTRACT

We have previously shown that the Tdp1 inhibitor, enamine derivative of usnic acid, the agent OL9-116, enhances the antitumor activity of topotecan. In the present study, we developed and validated LC-MS/MS method for the quantification of OL9-116 in mouse whole blood and studied pharmacokinetics of the agent. The substance OL9-116 was shown to be stable in the whole blood in vitro. Sample preparation included two steps: mixing 10 µL of a blood sample with 10 µL of 0.2 M ZnSO4 aqueous solution, followed by protein precipitation with 100 µL of acetonitrile containing internal standard. Quantification of the compound was performed using SCIEX 6500 QTRAP mass spectrometer in MRM mode following chromatographic separation on a C8 reversed-phase column. The method was validated in terms of selectivity, linearity, accuracy, precision, recovery, and stability of the prepared sample. When the agent OL9-116 was administered intragastrically at a dose of 150 mg/kg, the maximum concentration in the blood (about 5000 ng/mL) was reached after 2-4 h followed by the distribution and elimination of the compound. A study of the antitumor activity of a combination of OL9-116 and topotecan against Lewis lung carcinoma revealed that administration of topotecan 3 h after OL9-116 resulted in the most pronounced antitumor effect compared to simultaneous or individual administration of both compounds.

16.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298106

ABSTRACT

Tyrosyl-DNA-phosphodiesterase 1 (TDP1) is an important enzyme in the DNA repair system. The ability of the enzyme to repair DNA damage induced by a topoisomerase 1 poison such as the anticancer drug topotecan makes TDP1 a promising target for complex antitumor therapy. In this work, a set of new 5-hydroxycoumarin derivatives containing monoterpene moieties was synthesized. It was shown that most of the conjugates synthesized demonstrated high inhibitory properties against TDP1 with an IC50 in low micromolar or nanomolar ranges. Geraniol derivative 33a was the most potent inhibitor with IC50 130 nM. Docking the ligands to TDP1 predicted a good fit with the catalytic pocket blocking access to it. The conjugates used in non-toxic concentration increased cytotoxicity of topotecan against HeLa cancer cell line but not against conditionally normal HEK 293A cells. Thus, a new structural series of TDP1 inhibitors, which are able to sensitize cancer cells to the topotecan cytotoxic effect has been discovered.


Subject(s)
Antineoplastic Agents , Topotecan , Humans , Topotecan/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/chemistry , Structure-Activity Relationship , Phosphoric Diester Hydrolases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor
17.
Int J Mol Sci ; 24(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37240388

ABSTRACT

Genome compaction is one of the important subject areas for understanding the mechanisms regulating genes' expression and DNA replication and repair. The basic unit of DNA compaction in the eukaryotic cell is the nucleosome. The main chromatin proteins responsible for DNA compaction have already been identified, but the regulation of chromatin architecture is still extensively studied. Several authors have shown an interaction of ARTD proteins with nucleosomes and proposed that there are changes in the nucleosomes' structure as a result. In the ARTD family, only PARP1, PARP2, and PARP3 participate in the DNA damage response. Damaged DNA stimulates activation of these PARPs, which use NAD+ as a substrate. DNA repair and chromatin compaction need precise regulation with close coordination between them. In this work, we studied the interactions of these three PARPs with nucleosomes by atomic force microscopy, which is a powerful method allowing for direct measurements of geometric characteristics of single molecules. Using this method, we evaluated perturbations in the structure of single nucleosomes after the binding of a PARP. We demonstrated here that PARP3 significantly alters the geometry of nucleosomes, possibly indicating a new function of PARP3 in chromatin compaction regulation.


Subject(s)
DNA , Nucleosomes , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , DNA/chemistry , Chromatin , DNA Repair , DNA Damage
18.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175662

ABSTRACT

The DNA repair system plays a crucial role in maintaining the integrity of the genome [...].


Subject(s)
DNA Repair Enzymes , DNA Repair , DNA Repair Enzymes/metabolism , Genome , Pharmaceutical Preparations , DNA Damage
19.
Sci Rep ; 13(1): 7772, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179431

ABSTRACT

FUS is an RNA-binding protein involved in familiar forms of ALS and FTLD that also assembles into fibrillar cytoplasmic aggregates in some neurodegenerative diseases without genetic causes. The self-adhesive prion-like domain in FUS generates reversible condensates via the liquid-liquid phase separation process (LLPS) whose maturation can lead to the formation of insoluble fibrillar aggregates in vitro, consistent with the appearance of cytoplasmic inclusions in ageing neurons. Using a single-molecule imaging approach, we reveal that FUS can assemble into nanofibrils at concentrations in the nanomolar range. These results suggest that the formation of fibrillar aggregates of FUS could occur in the cytoplasm at low concentrations of FUS, below the critical ones required to trigger the liquid-like condensate formation. Such nanofibrils may serve as seeds for the formation of pathological inclusions. Interestingly, the fibrillation of FUS at low concentrations is inhibited by its binding to mRNA or after the phosphorylation of its prion-like domain, in agreement with previous models.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Prions , Humans , RNA, Messenger/metabolism , Prions/metabolism , Neurodegenerative Diseases/metabolism , Cytoplasm/metabolism , Phosphorylation , RNA-Binding Protein FUS/metabolism , Amyotrophic Lateral Sclerosis/metabolism
20.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982223

ABSTRACT

Topoisomerase 1 (TOP1) is an enzyme that regulates DNA topology and is essential for replication, recombination, and other processes. The normal TOP1 catalytic cycle involves the formation of a short-lived covalent complex with the 3' end of DNA (TOP1 cleavage complex, TOP1cc), which can be stabilized, resulting in cell death. This fact substantiates the effectiveness of anticancer drugs-TOP1 poisons, such as topotecan, that block the relegation of DNA and fix TOP1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is able to eliminate TOP1cc. Thus, TDP1 interferes with the action of topotecan. Poly(ADP-ribose) polymerase 1 (PARP1) is a key regulator of many processes in the cell, such as maintaining the integrity of the genome, regulation of the cell cycle, cell death, and others. PARP1 also controls the repair of TOP1cc. We performed a transcriptomic analysis of wild type and PARP1 knockout HEK293A cells treated with topotecan and TDP1 inhibitor OL9-119 alone and in combination. The largest number of differentially expressed genes (DEGs, about 4000 both up- and down-regulated genes) was found in knockout cells. Topotecan and OL9-119 treatment elicited significantly fewer DEGs in WT cells and negligible DEGs in PARP1-KO cells. A significant part of the changes caused by PARP1-KO affected the synthesis and processing of proteins. Differences under the action of treatment with TOP1 or TDP1 inhibitors alone were found in the signaling pathways for the development of cancer, DNA repair, and the proteasome. The drug combination resulted in DEGs in the ribosome, proteasome, spliceosome, and oxidative phosphorylation pathways.


Subject(s)
Phosphoric Diester Hydrolases , Topotecan , CRISPR-Cas Systems , DNA , DNA Repair , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , Esterases/metabolism , Phosphoric Diester Hydrolases/metabolism , Proteasome Endopeptidase Complex/metabolism , Topotecan/pharmacology , Transcriptome , Poly (ADP-Ribose) Polymerase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...