Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36770174

ABSTRACT

In the technological processes requiring mild treatment, such as soft materials processing or medical applications, an important role is played by non-equilibrium plasma reactors with dielectric barrier discharge (DBD), that when generated in noble gases allows for the effective treatment of biological material at a low temperature. The aim of this study is to determine the operating parameters of an atmospheric pressure, radio-frequency DBD plasma jet reactor for the precise treatment of biological materials. The tested parameters were the shape of the discharge (its length and volume), current and voltage signals, as well as the power consumed by the reactor for various composition and flow rates of the working gas. To determine the applicability in medicine, the temperature, pH, concentrations of H2O2, NO2- and NO3- and Escherichia coli log reduction in the plasma treated liquids were determined. The obtained results show that for certain operating parameters, a narrow shape of plasma stream can generate significant amounts of H2O2, allowing for the mild decontamination of bacteria at a relatively low power of the system, safe for the treatment of biological materials.

2.
Dalton Trans ; 51(28): 10763-10772, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35503460

ABSTRACT

In the present work, nanotwin structured TiO2 nanotube (TNT) layers are prepared by the electrochemical anodization technique to form the anatase phase and by surface modification via spin-coating of Ce and V precursors to form Ce-TNT and V-TNT, respectively. The surface and cross-sectional images by SEM revealed that the nanotubes have an average diameter of ∼130 nm and a length of ∼14 µm. In addition, the TEM images revealed the nanotwin structures of the nanotubes, especially the anatase (001) and (112) twin surfaces, that increase the transport of photogenerated charges. The photoinduced degradation of caffeine (CAF) by TNT, Ce-TNT, and V-TNT led to a degradation extent of 16%, 26% and 33%, respectively, whereas it increased to 26%, 38%, and 46% in the presence of H2O2, owing to the involvement of Fenton-based processes (in addition to photocatalysis). The effect of the Fenton-based processes accounts for about 10% of the total degradation extent of CAF. Finally, the mechanism of the photoinduced degradation of CAF was investigated. The main oxidative species were the hydroxyl radicals, and the better efficiency of V-TNT over Ce-TNT and TNT was ascribed to its negative surface, thus improving the interactions with CAF.


Subject(s)
Hydrogen Peroxide , Nanotubes , Electrodes , Nanotubes/chemistry , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...