Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
ACS Omega ; 7(26): 22626-22632, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35811885

ABSTRACT

The purity and morphology of the copper surface is important for the synthesis of high-quality, large-grained graphene by chemical vapor deposition. We find that atomically smooth copper foils-fabricated by physical vapor deposition and subsequent electroplating of copper on silicon wafer templates-exhibit strongly reduced surface roughness after the annealing of the copper catalyst, and correspondingly lower nucleation and defect density of the graphene film, when compared to commercial cold-rolled copper foils. The "ultrafoils"-ultraflat foils-facilitate easier dry pickup and encapsulation of graphene by hexagonal boron nitride, which we believe is due to the lower roughness of the catalyst surface promoting a conformal interface and subsequent stronger van der Waals adhesion between graphene and hexagonal boron nitride.

2.
Nanomaterials (Basel) ; 12(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35630973

ABSTRACT

High-contrast gratings (HCG) are an excellent candidate for label-free detection of various kinds of biomarkers because they exhibit sharp and sensitive optical resonances. In this work, we experimentally show the performance of pedestal HCG (PHCG), which is significantly enhanced in comparison with that of conventional HCG. PCHGs were found to provide a 11.2% improvement in bulk refractive index sensitivity, from 482 nm/RIU for the conventional design to 536 nm/RIU. The observed resonance was narrower, resulting in a higher Q-factor and figure of merit. By depositing Al2O3, HfO2, and TiO2 of different thicknesses as model analyte layers, surface sensitivity values were estimated to be 10.5% better for PHCG. To evaluate the operation of the sensor in solution, avidin was employed as a model analyte. For avidin detection, the surface of the HCG was first silanized and subsequently functionalized with biotin, which is well known for its ability to bind selectively to avidin. A consistent red shift was observed with the addition of each of the functional layers, and the analysis of the spectral shift for various concentrations of avidin made it possible to calculate the limit of detection (LoD) and limit of quantification (LoQ) for the structures. PHCG showed a LoD of 2.1 ng/mL and LoQ of 85 ng/mL, significantly better than the values 3.2 ng/mL and 213 ng/mL respectively, obtained with the conventional HCG. These results demonstrate that the proposed PHCG have great potential for biosensing applications, particularly for detecting and quantifying low analyte concentrations.

3.
Light Sci Appl ; 11(1): 110, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35468887

ABSTRACT

Near-zero index (NZI) materials, i.e., materials having a phase refractive index close to zero, are known to enhance or inhibit light-matter interactions. Most theoretical derivations of fundamental radiative processes rely on energetic considerations and detailed balance equations, but not on momentum considerations. Because momentum exchange should also be incorporated into theoretical models, we investigate momentum inside the three categories of NZI materials, i.e., inside epsilon-and-mu-near-zero (EMNZ), epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials. In the context of Abraham-Minkowski debate in dispersive materials, we show that Minkowski-canonical momentum of light is zero inside all categories of NZI materials while Abraham-kinetic momentum of light is zero in ENZ and MNZ materials but nonzero inside EMNZ materials. We theoretically demonstrate that momentum recoil, transfer momentum from the field to the atom and Doppler shift are inhibited in NZI materials. Fundamental radiative processes inhibition is also explained due to those momentum considerations inside three-dimensional NZI materials. Absence of diffraction pattern in slits experiments is seen as a consequence of zero Minkowski momentum. Lastly, consequence on Heisenberg inequality, microscopy applications and on the canonical momentum as generator of translations are discussed. Those findings are appealing for a better understanding of fundamental light-matter interactions at the nanoscale as well as for lasing applications.

4.
Opt Express ; 29(18): 28787-28804, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34615001

ABSTRACT

Due to the increasing interest in emerging applications of graphene or other 2D material-based devices in photonics, a powerful, fast and accurate tool for the analysis of such structures is really in need. In this paper, the semi-analytical method of lines (MoL) is generalized for the diffraction analysis of tunable graphene-based plasmonic devices possessing three dimensional periodicity. We employ Floquet's theorem to handle analytically propagation of waves in the periodicity of the graphene-dielectric arrays in the direction of the layers stacking. This makes the method very effective in terms of computational time and memory consumption. To validate its efficiency and accuracy, the method is applied to plasmonic devices formed by alternating patterned graphene sheets and dielectric layers. Direct comparison with results available in literature and those obtained by a commercial software exhibits their full consistency.

5.
Nano Lett ; 21(9): 3820-3826, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33886339

ABSTRACT

Phase retrieval is a noninterferometric quantitative phase imaging technique that has become an essential tool in optical metrology and label-free microscopy. Phase retrieval techniques require multiple intensity measurements traditionally recorded by camera or sample translation, which limits their applicability mostly to static objects. In this work, we propose the use of a single polarization-dependent all-dielectric metasurface to facilitate the simultaneous recording of two images, which are utilized in phase calculation based on the transport-of-intensity equation. The metasurface acts as a multifunctional device that splits two orthogonal polarization components and adds a propagation phase shift onto one of them. As a proof-of-principle, we demonstrate the technique in the wavefront sensing of technical samples using a standard imaging setup. Our metasurface-based approach fosters a fast and compact configuration that can be integrated into commercial imaging systems.


Subject(s)
Microscopy
6.
Opt Express ; 28(22): 33176-33183, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114986

ABSTRACT

We theoretically analyze directional surface electromagnetic waves supported at an interface between an isotropic medium and anisotropic metal with effective uniaxial negative permittivity. We identify two types of surface wave solutions, resulting in unique hyperbolic dispersion in the wavevector space. Such anisotropic metal can be realized by alternating dielectric and metallic layers with deep subwavelength thicknesses or metallic nanowires in dielectric host. Such systems serve as a platform for many applications in nanophotonics.

7.
Opt Lett ; 45(13): 3418, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630859

ABSTRACT

This publisher's note contains corrections to Opt. Lett.45, 3244 (2020)OPLEDP0146-959210.1364/OL.391861.

8.
Opt Lett ; 45(12): 3244-3247, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32538953

ABSTRACT

We propose and study a microstructure based on a dielectric cuboid placed on a thin metal film that can act as an efficient plasmonic lens allowing the focusing of surface plasmons at the subwavelength scale. Using numerical simulations of surface plasmon polariton (SPP) field intensity distributions, we observe high-intensity subwavelength spots and formation of the plasmonic nanojet (PJ) at the telecommunication wavelength of 1530 nm. The fabricated microstructure was characterized using amplitude and phase-resolved scattering-type scanning near-field optical microscopy. We show the first experimental observation of the PJ effect for the SPP waves. Such a novel, to the best of our knowledge, and simple platform can provide new pathways for plasmonics, high-resolution imaging, and biophotonics, as well as optical data storage.

9.
Nanoscale Adv ; 2(8): 3452-3459, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-36134290

ABSTRACT

Hydrogen (H2) sensing is crucial in a wide variety of areas, such as industrial, environmental, energy and biomedical applications. However, engineering a practical, reliable, fast, sensitive and cost-effective hydrogen sensor is a persistent challenge. Here we demonstrate hydrogen sensing using aluminum-doped zinc oxide (AZO) metasurfaces based on optical read-out. The proposed sensing system consists of highly ordered AZO nanotubes (hollow pillars) standing on a SiO2 layer deposited on a Si wafer. Upon exposure to hydrogen gas, the AZO nanotube system shows a wavelength shift in the minimum reflectance by ∼13 nm within 10 minutes for a hydrogen concentration of 4%. These AZO nanotubes can also sense the presence of a low concentration (0.7%) of hydrogen gas within 10 minutes. Their rapid response time even for a low concentration, the possibility of large sensing area fabrication with good precision, and high sensitivity at room temperature make these highly ordered nanotube structures a promising miniaturized H2 gas sensor.

10.
Nanoscale ; 11(26): 12582-12588, 2019 Jul 14.
Article in English | MEDLINE | ID: mdl-31231735

ABSTRACT

Multilayer hyperbolic metamaterials (HMMs) are highly anisotropic media consisting of alternating metal and dielectric layers with their electromagnetic properties defined by the effective medium approximation (EMA). EMA is generally applied for a large number of subwavelength unit cells or periods of a multilayer HMM. However, in practice, the number of periods is limited. To the best of our knowledge, a comparison between rigorous theory, EMA and experiments to investigate the minimum number of layers that allow for the low error of EMA results has not yet been investigated. In this article, we compared the reflectance response of the effective anisotropic HMMs predicted by the scattering matrix method (SMM) and EMA with optical characterization data, having the unit cell twenty times smaller than the vacuum wavelength in the visible range. The fabricated HMM structures consist of up to ten periods of alternating 10 nm thick Au and Al2O3 layers deposited by sputtering and atomic layer deposition, respectively. The two deposition techniques enable us to achieve a high quality HMM with low roughness: the root mean square (RMS) is less than 1 nm. We showed that the multilayer structure behaves like an effective medium from the fourth period onwards as the EMA calculation and experimental results agree well having below 4% mean square standard deviation of reflectance (MSDR) for the wavelength range from 500 to 1750 nm with a wide incident angle range. These results could have an impact on the design and development of active metamaterials and their applications ranging from imaging to nonlinear optics and sensing.

11.
Sci Rep ; 9(1): 6053, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30988356

ABSTRACT

Realization of an on-chip quantum network is a major goal in the field of integrated quantum photonics. A typical network scalable on-chip demands optical integration of single photon sources, optical circuitry and detectors for routing and processing of quantum information. Current solutions either notoriously experience considerable decoherence or suffer from extended footprint dimensions limiting their on-chip scaling. Here we propose and numerically demonstrate a robust on-chip network based on an epsilon-near-zero (ENZ) material, whose dielectric function has the real part close to zero. We show that ENZ materials strongly protect quantum information against decoherence and losses during its propagation in the dense network. As an example, we model a feasible implementation of an ENZ network and demonstrate that information can be reliably sent across a titanium nitride grid with a coherence length of 434 nm, operating at room temperature, which is more than 40 times larger than state-of-the-art plasmonic analogs. Our results facilitate practical realization of large multi-node quantum photonic networks and circuits on-a-chip.

12.
Opt Lett ; 43(19): 4602-4605, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30272693

ABSTRACT

The photonic spin Hall effect in transmission is a transverse beam shift of the out-coming beam depending on polarization of the incoming beam. The effect can be significantly enhanced by materials with high anisotropy. We report, to the best of our knowledge, the first experimental demonstration of the photonic spin Hall effect in a multilayer hyperbolic metamaterial at visible wavelengths (wavelengths of 520 and 633 nm). The metamaterial is composed of alternating layers of gold and alumina with deeply subwavelength thicknesses, exhibiting extremely large anisotropy. The angle-resolved polarimetric measurements showed the shift of 165 µm for the metamaterial of 176 nm in thickness. Additionally, the transverse beam shift is extremely sensitive to the variations of the incident angle changing theoretically by 270 µm with 1 milli-radian (0.057°). These features can lead to minituarized spin Hall switches and filters with high angular resolution.

13.
Sci Rep ; 8(1): 14135, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30237425

ABSTRACT

Metasurfaces offer great potential to control near- and far-fields through engineering optical properties of elementary cells or meta-atoms. Such perspective opens a route to efficient manipulation of the optical signals both at nanoscale and in photonics applications. In this paper we show that a local surface conductivity tensor well describes optical properties of a resonant plasmonic hyperbolic metasurface both in the far-field and in the near-field regimes, where spatial dispersion usually plays a crucial role. We retrieve the effective surface conductivity tensor from the comparative analysis of experimental and numerical reflectance spectra of a metasurface composed of elliptical gold nanoparticles. Afterwards, the restored conductivities are validated by semi-analytic parameters obtained with the nonlocal discrete dipole model with and without interaction contribution between meta-atoms. The effective parameters are further used for the dispersion analysis of surface plasmons localized at the metasurface. The obtained effective conductivity describes correctly the dispersion law of both quasi-TE and quasi-TM plasmons in a wide range of optical frequencies as well as the peculiarities of their propagation regimes, in particular, topological transition from the elliptical to hyperbolic regime with eligible accuracy. The analysis in question offers a simple practical way to describe properties of metasurfaces including ones in the near-field zone with effective conductivity tensor extracting from the convenient far-field characterization.

14.
Opt Express ; 26(9): 11366-11392, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29716058

ABSTRACT

We present numerical studies of two photonic crystal membrane microcavities, a short line-defect cavity with a relatively low quality (Q) factor and a longer cavity with a high Q. We use five state-of-the-art numerical simulation techniques to compute the cavity Q factor and the resonance wavelength λ for the fundamental cavity mode in both structures. For each method, the relevant computational parameters are systematically varied to estimate the computational uncertainty. We show that some methods are more suitable than others for treating these challenging geometries.

15.
Nano Lett ; 17(11): 7152-7159, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29058440

ABSTRACT

Anapole states associated with the resonant suppression of electric-dipole scattering exhibit minimized extinction and maximized storage of electromagnetic energy inside a particle. Using numerical simulations, optical extinction spectroscopy, and amplitude-phase near-field mapping of silicon dielectric disks, we demonstrate high-order anapole states in the near-infrared wavelength range (900-1700 nm). We develop the procedure for unambiguously identifying anapole states by monitoring the normal component of the electric near-field and experimentally detect the first two anapole states as verified by far-field extinction spectroscopy and confirmed with the numerical simulations. We demonstrate that higher-order anapole states possess stronger energy concentration and narrower resonances, a remarkable feature that is advantageous for their applications in metasurfaces and nanophotonics components, such as nonlinear higher-harmonic generators and nanoscale lasers.

16.
Nanoscale ; 9(33): 12014-12024, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28795742

ABSTRACT

Controlling and confining light by exciting plasmons in resonant metallic nanostructures is an essential aspect of many new emerging optical technologies. Here we explore the possibility of controllably reconfiguring the intrinsic optical properties of semi-continuous gold films, by inducing permanent morphological changes with a femtosecond (fs)-pulsed laser above a critical power. Optical transmission spectroscopy measurements show a correlation between the spectra of the morphologically modified films and the wavelength, polarization, and the intensity of the laser used for alteration. In order to understand the modifications induced by the laser writing, we explore the near-field properties of these films with electron energy-loss spectroscopy (EELS). A comparison between our experimental data and full-wave simulations on the exact film morphologies hints toward a restructuring of the intrinsic plasmonic eigenmodes of the metallic film by photothermal effects. We explain these optical changes with a simple model and demonstrate experimentally that laser writing can be used to controllably modify the optical properties of these semi-continuous films. These metal films offer an easy-to-fabricate and scalable platform for technological applications such as molecular sensing and ultra-dense data storage.

17.
Sci Rep ; 7(1): 3106, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28596522

ABSTRACT

Cantilever sensors are among the most important microelectromechanical systems (MEMS), which are usually actuated by electrostatic forces or piezoelectric elements. Although well-developed microfabrication technology has made silicon the prevailing material for MEMS, unique properties of other materials are overlooked in this context. Here we investigate optically induced forces exerted upon a semi-insulating InP waveguide suspended above a highly doped InP:Si substrate, in three different regimes: the epsilon-near-zero (ENZ), with excitation of surface plasmon polaritons (SPPs) and phonons excitation. An order of magnitude amplification of the force is observed when light is coupled to SPPs, and three orders of magnitude amplification is achieved in the phonon excitation regime. In the ENZ regime, the force is found to be repulsive and higher than that in a waveguide suspended above a dielectric substrate. Low losses in InP:Si result in a big propagation length. The induced deflection can be detected by measuring the phase change of the light when passing through the waveguide, which enables all-optical functioning, and paves the way towards integration and miniaturization of micro-cantilevers. In addition, tunability of the ENZ and the SPP excitation wavelength ranges, via adjusting the carrier concentration, provides an extra degree of freedom for designing MEMS devices.

18.
Phys Rev Lett ; 118(18): 180401, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28524676

ABSTRACT

Optical and acoustic tractor beams are currently the focus of intense research due to their counterintuitive property of exerting a pulling force on small scattering objects. In this Letter we propose a matter-wave tractor beam and utilize the de Broglie waves of nonrelativistic matter particles in analogy to "classical" tractor beams. We reveal the presence of the quantum-mechanical pulling force for the variety of quantum mechanical potentials observing the resonant enhancement of the pulling effect under the conditions of the suppressed scattering known as the Ramsauer-Townsend effect. We also derive the sufficient conditions on the scattering potential for the emergence of the pulling force and show that, in particular, a Coulomb scatterer is always shoved, while a Yukawa (screened Coulomb) scatterer can be drawn. Pulling forces in optics, acoustics, quantum mechanics, and classical mechanics are compared, and the matter-wave pulling force is found to have exclusive properties of dragging slow particles in short-range potentials. We envisage that the use of tractor beams could lead to the unprecedented precision in manipulation with atomic-scale quantum objects.

19.
Sci Rep ; 7(1): 652, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28381822

ABSTRACT

In order to pull objects towards the light source a single tractor beam inevitably needs to be strongly nonparaxial. This stringent requirement makes such a tractor beam somewhat hypothetical. Here we reveal that the cylindrical shape of dielectric particles can effectively mitigate the nonparaxiality requirements, reducing the incidence angle of the partial plane waves of the light beam down to 45° and even to 30° for respectively dipole and dipole-quadrupole objects. The optical pulling force attributed to the interaction of magnetic dipole and magnetic quadrupole moments of dielectric cylinders occurs due to the TE rather than TM polarization. Therefore, the polarization state of the incident beam can be utilized as an external control for switching between the pushing and pulling forces. The results have application values towards optical micromanipulation, transportation and sorting of targeted particles.

20.
Opt Lett ; 41(2): 317-20, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26766703

ABSTRACT

This Letter presents an experimental study of nonlinear plasmonic effects in gold-stripe waveguides. The optical characterization is performed by a picosecond laser and reveals two nonlinear effects related to propagation of long-range surface plasmon polaritons: nonlinear power transmission of plasmonic modes and spectral broadening of plasmonic modes. The experimental values of the third-order susceptibility of the gold layers are extracted. They exhibit a clear dependence on layer thickness.

SELECTION OF CITATIONS
SEARCH DETAIL
...