Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Data ; 11(1): 643, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886393

ABSTRACT

Listeria monocytogenes (Lm) is a highly pathogenic bacterium that can cause listeriosis, a relatively rare food-borne infectious disease that affects farm, domestic, wild animals and humans as well. The infected livestock is the frequent sources of Lm. Vaccination is one of the methods of controlling listeriosis in target farm animals to prevent Lm-associated food contamination. Here we report the complete sequence of the Lm strain AUF attenuated from a fully-virulent Lm strain by ultraviolet irradiation, successfully used since the 1960s as a live whole-cell veterinary vaccine. The de novo assembled genome consists of a circular chromosome of 2,942,932 bp length, including more than 2,800 CDSs, 17 pseudogenes, 5 antibiotic resistance genes, and 56/92 virulence genes. Two wild Lm strains, the EGD and the 10403S that is also used in cancer Immunotherapy, were the closest homologs for the Lm strain AUF. Although all three strains belonged to different sequence types (ST), namely ST12, ST85, and ST1538, they were placed in the same genetic lineage II, CC7.


Subject(s)
Genome, Bacterial , Listeria monocytogenes , Listeriosis , Animals , Bacterial Vaccines/immunology , Listeria monocytogenes/genetics , Listeriosis/veterinary , Vaccines, Attenuated
2.
Curr Issues Mol Biol ; 45(12): 10056-10078, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38132474

ABSTRACT

Two approaches to the synthesis of 2D binary identifiers ("fingerprints") of DNA-associated symbol sequences are considered in this paper. One of these approaches is based on the simulation of polarization-dependent diffraction patterns formed by reading the modeled DNA-associated 2D phase-modulating structures with a coherent light beam. In this case, 2D binarized distributions of close-to-circular extreme polarization states are applied as fingerprints of analyzed nucleotide sequences. The second approach is based on the transformation of the DNA-associated chaos game representation (CGR) maps into finite-dimensional binary matrices. In both cases, the differences between the structures of the analyzed and reference symbol sequences are quantified by calculating the correlation coefficient of the synthesized binary matrices. A comparison of the approaches under consideration is carried out using symbol sequences corresponding to nucleotide sequences of the hly gene from the vaccine and wild-type strains of Listeria monocytogenes as the analyzed objects. These strains differ in terms of the number of substituted nucleotides in relation to the vaccine strain selected as a reference. The results of the performed analysis allow us to conclude that the identification of structural differences in the DNA-associated symbolic sequences is significantly more efficient when using the binary distributions of close-to-circular extreme polarization states. The approach given can be applicable for genetic differentiation immunized from vaccinated animals (DIVA).

SELECTION OF CITATIONS
SEARCH DETAIL