Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 18: 1339881, 2024.
Article in English | MEDLINE | ID: mdl-38332933

ABSTRACT

Non-invasive neuroimaging serves as a valuable tool for investigating the mechanisms within the central nervous system (CNS) related to somatosensory and motor processing, emotions, memory, cognition, and other functions. Despite the extensive use of brain imaging, spinal cord imaging has received relatively less attention, regardless of its potential to study peripheral communications with the brain and the descending corticospinal systems. To comprehensively understand the neural mechanisms underlying human sensory and motor functions, particularly in pathological conditions, simultaneous examination of neuronal activity in both the brain and spinal cord becomes imperative. Although technically demanding in terms of data acquisition and analysis, a growing but limited number of studies have successfully utilized specialized acquisition protocols for corticospinal imaging. These studies have effectively assessed sensorimotor, autonomic, and interneuronal signaling within the spinal cord, revealing interactions with cortical processes in the brain. In this mini-review, we aim to examine the expanding body of literature that employs cutting-edge corticospinal imaging to investigate the flow of sensorimotor information between the brain and spinal cord. Additionally, we will provide a concise overview of recent advancements in functional magnetic resonance imaging (fMRI) techniques. Furthermore, we will discuss potential future perspectives aimed at enhancing our comprehension of large-scale neuronal networks in the CNS and their disruptions in clinical disorders. This collective knowledge will aid in refining combined corticospinal fMRI methodologies, leading to the development of clinically relevant biomarkers for conditions affecting sensorimotor processing in the CNS.

3.
Front Neurol ; 13: 960760, 2022.
Article in English | MEDLINE | ID: mdl-36601297

ABSTRACT

Muscle weakness is common in many neurological, neuromuscular, and musculoskeletal conditions. Muscle size only partially explains muscle strength as adaptions within the nervous system also contribute to strength. Brain-based biomarkers of neuromuscular function could provide diagnostic, prognostic, and predictive value in treating these disorders. Therefore, we sought to characterize and quantify the brain's contribution to strength by developing multimodal MRI pipelines to predict grip strength. However, the prediction of strength was not straightforward, and we present a case of sex being a clear confound in brain decoding analyses. While each MRI modality-structural MRI (i.e., gray matter morphometry), diffusion MRI (i.e., white matter fractional anisotropy), resting state functional MRI (i.e., functional connectivity), and task-evoked functional MRI (i.e., left or right hand motor task activation)-and a multimodal prediction pipeline demonstrated significant predictive power for strength (R 2 = 0.108-0.536, p ≤ 0.001), after correcting for sex, the predictive power was substantially reduced (R 2 = -0.038-0.075). Next, we flipped the analysis and demonstrated that each MRI modality and a multimodal prediction pipeline could significantly predict sex (accuracy = 68.0%-93.3%, AUC = 0.780-0.982, p < 0.001). However, correcting the brain features for strength reduced the accuracy for predicting sex (accuracy = 57.3%-69.3%, AUC = 0.615-0.780). Here we demonstrate the effects of sex-correlated confounds in brain-based predictive models across multiple brain MRI modalities for both regression and classification models. We discuss implications of confounds in predictive modeling and the development of brain-based MRI biomarkers, as well as possible strategies to overcome these barriers.

4.
ChemMedChem ; 16(12): 1861-1877, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33646618

ABSTRACT

Benzimidazole is a heterocyclic ring system that has been widely studied in the pharmaceutical field. For the past decade, numerous benzimidazole derivatives have been synthesized and evaluated for their wide range of pharmacological activities, which are beneficial for drug development. This article presents the biological effects of benzimidazole derivatives in each invention from 2015 to 2020. Two patent databases, Google Patents and Lens, were used to locate relevant granted patent applications. Specifically, this review delineates the role of patented benzimidazoles from a disease-centric perspective and examines the mechanisms of action of these compounds in related diseases. Most of the benzimidazoles have shown good activities against various target proteins. Whilst several of them have progressed into clinical trials, most patents presented novel therapeutic approaches for respective target diseases. Hence, their potential in being developed into clinical drugs are also discussed.


Subject(s)
Benzimidazoles/chemical synthesis , Drug Discovery , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Humans , Molecular Structure
5.
Neuroimage ; 229: 117752, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33460795

ABSTRACT

International spread of the coronavirus SARS-CoV-2 has prompted many MRI scanning facilities to require scan subjects to wear a facial covering ("mask") during scanning as a precaution against transmission of the virus. Because wearing a mask mixes expired air with the subject's inspired air stream, the concentration of inspired carbon dioxide [CO2] is elevated, resulting in mild hypercapnia. Changes in the inspired gas mixture have been demonstrated to alter R2*-weighted Blood Oxygen Dependent (BOLD) contrast. In this study, we investigate a potential for face masking to alter BOLD contrast during a sensory-motor task designed to activate visual, auditory, and sensorimotor cortices in 8 subjects. We utilize a nasal cannula to supply air to the subject wearing a surgical mask in on-off blocks of 90s to displace expired CO2, while the subject performs the sensory-motor task. While only a small fraction (2.5%) of the sensory-motor task activation is related to nasal air modulation, a 30.0% change in gray matter BOLD signal baseline is found due to air modulation. Repeating the scan with mask removed produces a small subject-specific bias in BOLD baseline signal from nasal air supply, which may be due to cognitive influence of airflow or cannula-induced hypoxia. Measurements with capnography demonstrate wearing a mask induces an average increase in ETCO2 of 7.4%. Altogether, these results demonstrate that wearing a face mask during gradient-echo fMRI can alter BOLD baseline signal but minimally affects task activation.


Subject(s)
Carbon Dioxide/metabolism , Functional Neuroimaging , Gray Matter/physiology , Magnetic Resonance Imaging , Masks , Psychomotor Performance/physiology , Sensorimotor Cortex/physiology , Adult , COVID-19/prevention & control , Gray Matter/diagnostic imaging , Gray Matter/metabolism , Humans , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/metabolism , Young Adult
6.
Neuroimage ; 217: 116905, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32387628

ABSTRACT

Dermatomal maps are a mainstay of clinical practice and provide information on the spatial distribution of the cutaneous innervation of spinal nerves. Dermatomal deficits can help isolate the level of spinal nerve root involvement in spinal conditions and guide clinicians in diagnosis and treatment. Dermatomal maps, however, have limitations, and the spatial distribution of spinal cord sensory activity in humans remains to be quantitatively assessed. Here we used spinal cord functional MRI to map and quantitatively compare the spatial distribution of sensory spinal cord activity during tactile stimulation of the left and right lateral shoulders (i.e. C5 dermatome) and dorsal third digits of the hands (i.e., C7 dermatome) in healthy humans (n â€‹= â€‹24, age â€‹= â€‹36.8 â€‹± â€‹11.8 years). Based on the central sites for processing of innocuous tactile sensory information, we hypothesized that the activity would be localized more to the ipsilateral dorsal spinal cord with the lateral shoulder stimulation activity being localized more superiorly than the dorsal third digit. The findings demonstrate lateralization of the activity with the left- and right-sided stimuli having more activation in the ipsilateral hemicord. Contradictory to our hypotheses, the activity for both stimulation sites was spread across the dorsal and ventral hemicords and did not demonstrate a clear superior-inferior localization. Instead, the activity for both stimuli had a broader than expected distribution, extending across the C5, C6, and C7 spinal cord segments. We highlight the complexity of the human spinal cord neuroanatomy and several sources of variability that may explain the observed patterns of activity. While the findings were not completely consistent with our a priori hypotheses, this study provides a foundation for continued work and is an important step towards developing normative quantitative spinal cord measures of sensory function, which may become useful objective MRI-based biomarkers of neurological injury and improve the management of spinal disorders.


Subject(s)
Cervical Cord/diagnostic imaging , Cervical Cord/physiology , Magnetic Resonance Imaging/methods , Spinal Cord/diagnostic imaging , Spinal Cord/physiology , Touch/physiology , Upper Extremity/innervation , Upper Extremity/physiology , Adult , Cervical Cord/anatomy & histology , Female , Fingers/innervation , Fingers/physiology , Functional Laterality , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Physical Stimulation , Spinal Cord/anatomy & histology , Young Adult
7.
Magn Reson Med ; 81(2): 825-838, 2019 02.
Article in English | MEDLINE | ID: mdl-30284730

ABSTRACT

PURPOSE: Simultaneous brain and spinal cord functional MRI is emerging as a new tool to study the central nervous system but is challenging. Poor B0 homogeneity and small size of the spinal cord are principal obstacles to this nascent technology. Here we extend a dynamic shimming approach, first posed by Finsterbusch, by shimming per slice for both the brain and spinal cord. METHODS: We shim dynamically by a simple and fast optimization of linear field gradients and frequency offset separately for each slice in order to minimize off-resonance for both the brain and spinal cord. Simultaneous acquisition of brain and spinal cord fMRI is achieved with high spatial resolution in the spinal cord by means of an echo-planar RF pulse for reduced FOV. Brain slice acquisition is full FOV. RESULTS: T2*-weighted images of brain and spinal cord are acquired with high clarity and minimal observable image artifacts. Fist-clenching fMRI experiments reveal task-consistent activation in motor cortices, cerebellum, and C6-T1 spinal segments. CONCLUSIONS: High quality functional results are obtained for a sensory-motor task. Consistent activation in both the brain and spinal cord is observed at individual levels, not only at group level. Because reduced FOV excitation is applicable to any spinal cord section, future continuation of these methods holds great potential.


Subject(s)
Brain Stem/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging , Spinal Cord/diagnostic imaging , Algorithms , Artifacts , Echo-Planar Imaging , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Normal Distribution
8.
Magn Reson Med ; 62(3): 829-34, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19449373

ABSTRACT

The conventional spiral-in/out trajectory samples k-space sufficiently in the spiral-in path and sufficiently in the spiral-out path to enable creation of separate images. We propose an "interleaved spiral-in/out" trajectory comprising a spiral-in path that gathers one half of the k-space data, and a complimentary spiral-out path that gathers the other half. The readout duration is thereby reduced by approximately half, offering two distinct advantages: reduction of signal dropout due to susceptibility-induced field gradients (at the expense of signal-to-noise ratio [SNR]), and the ability to achieve higher spatial resolution when the readout duration is identical to the conventional method. Two reconstruction methods are described; both involve temporal filtering to remove aliasing artifacts. Empirically, interleaved spiral-in/out images are free from false activation resulting from signal pileup around the air/tissue interface, which is common in the conventional spiral-out method. Comparisons with conventional methods using a hyperoxia stimulus reveal greater frontal-orbital activation volumes but a slight reduction of overall activation in other brain regions.


Subject(s)
Brain Mapping/methods , Brain/anatomy & histology , Brain/physiology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Algorithms , Humans , Reproducibility of Results , Sensitivity and Specificity
9.
Magn Reson Med ; 60(5): 1090-103, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18956461

ABSTRACT

Functional magnetic resonance imaging (fMRI) at high magnetic field with parallel imaging (PI) has become increasingly popular for high-resolution imaging. We present a method of self-calibrated PI-fMRI in which sensitivity profiles are calculated using a sliding window of fully sampled multishot imaging data. We show that by updating these sensitivity profiles in a sliding fashion, thermal noise is reduced in the reconstructed image time series. This is accomplished by retaining thermal noise in the sensitivity profiles; no spatial smoothing is performed. These noisy profiles actually provide a closer match to those required for thermal noise-free reconstruction than conventional sensitivity map generation. Our proposed technique is especially applicable for acquiring high-spatial-resolution images, where thermal noise exceeds physiological noise. With conventional sensitivity calculation, PI-fMRI sensitivity is preserved only when using a voxel size large enough such that physiological noise predominates. With small voxel size, our technique reveals activation from visual stimulation where conventional sensitivity calculation techniques falter. Our technique enhances fMRI detection, especially when higher spatial resolution is desired.


Subject(s)
Algorithms , Artifacts , Brain/physiology , Evoked Potentials/physiology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Calibration , Humans , Magnetic Resonance Imaging/standards , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...