Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Pharmacol Sci ; 44(5): 274-289, 2023 05.
Article in English | MEDLINE | ID: mdl-36964053

ABSTRACT

The tumor suppressor p53 is the most frequently mutated protein in human cancer and tops the list of high-value precision oncology targets. p53 prevents initiation and progression of cancer by inducing cell-cycle arrest and various forms of cell death. Tumors have thus evolved ways to inactivate p53, mainly by TP53 mutations or by hyperactive p53 degradation. This review focuses on two types of p53 targeting compounds, MDM2 antagonists and mutant p53 correctors. MDM2 inhibitors prevent p53 protein degradation, while correctors restore tumor suppressor activity of p53 mutants by enhancing thermodynamic stability. Herein we explore both novel and repurposed p53 targeting compounds, discuss their mode of action, and examine the challenges in advancing them to the clinic.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/therapeutic use , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Precision Medicine , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
2.
Nat Cancer ; 3(11): 1386-1403, 2022 11.
Article in English | MEDLINE | ID: mdl-36411320

ABSTRACT

The pancreatic tumor microenvironment drives deregulated nutrient availability. Accordingly, pancreatic cancer cells require metabolic adaptations to survive and proliferate. Pancreatic cancer subtypes have been characterized by transcriptional and functional differences, with subtypes reported to exist within the same tumor. However, it remains unclear if this diversity extends to metabolic programming. Here, using metabolomic profiling and functional interrogation of metabolic dependencies, we identify two distinct metabolic subclasses among neoplastic populations within individual human and mouse tumors. Furthermore, these populations are poised for metabolic cross-talk, and in examining this, we find an unexpected role for asparagine supporting proliferation during limited respiration. Constitutive GCN2 activation permits ATF4 signaling in one subtype, driving excess asparagine production. Asparagine release provides resistance during impaired respiration, enabling symbiosis. Functionally, availability of exogenous asparagine during limited respiration indirectly supports maintenance of aspartate pools, a rate-limiting biosynthetic precursor. Conversely, depletion of extracellular asparagine with PEG-asparaginase sensitizes tumors to mitochondrial targeting with phenformin.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Animals , Mice , Humans , Pancreatic Neoplasms/drug therapy , Asparagine/metabolism , Adenocarcinoma/drug therapy , Symbiosis , Tumor Microenvironment , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...