Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
J Agric Food Chem ; 68(40): 11170-11181, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32840366

ABSTRACT

(R)-Oxyphylla A, a natural product isolated from Alpinia oxyphylla Miquel as a food and medicinal plant, has been reported previously as a novel chiral compound that possesses a potential therapeutic value for Parkinson's disease (PD). A chiral high-performance liquid chromatography-multiple reaction monitoring-mass spectrometry method was developed to separate oxyphylla A enantiomers and to identify the presence of natural (S)-oxyphylla A for the first time. Twelve samples of dried A. oxyphylla fruits were analyzed in which a large variation in the abundance of enantiomers was observed. Moreover, (S)-oxyphylla A was less abundant in all tested samples, whereas fruits harvested from Hainan and Guangdong tended to have relatively higher total concentrations of enantiomers. Additionally, enantiomers exhibited comparable neuroprotective effects in the zebrafish model of PD without observed toxicity phenotype. The optimized enantioseparation method will be crucial for the quality control of A. oxyphylla and research on bioactivities facilitates the development of oxyphylla A as a potential therapeutic for neurodegenerative diseases.


Subject(s)
Alpinia/chemistry , Caproates/administration & dosage , Caproates/chemistry , Cresols/administration & dosage , Cresols/chemistry , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Parkinson Disease/drug therapy , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Animals , Chromatography, High Pressure Liquid , Female , Fruit/chemistry , Humans , Male , Mass Spectrometry , Zebrafish
3.
Front Microbiol ; 10: 127, 2019.
Article in English | MEDLINE | ID: mdl-30891005

ABSTRACT

In vitro studies of liver stage (LS) development of the human malaria parasite Plasmodium falciparum are technically challenging; therefore, fundamental questions about hepatocyte receptors for invasion that can be targeted to prevent infection remain unanswered. To identify novel receptors and to further understand human hepatocyte susceptibility to P. falciparum sporozoite invasion, we created an optimized in vitro system by mimicking in vivo liver conditions and using the subcloned HC-04.J7 cell line that supports mean infection rates of 3-5% and early development of P. falciparum exoerythrocytic forms-a 3- to 5-fold improvement on current in vitro hepatocarcinoma models for P. falciparum invasion. We juxtaposed this invasion-susceptible cell line with an invasion-resistant cell line (HepG2) and performed comparative proteomics and RNA-seq analyses to identify host cell surface molecules and pathways important for sporozoite invasion of host cells. We identified and investigated a hepatocyte cell surface heparan sulfate proteoglycan, glypican-3, as a putative mediator of sporozoite invasion. We also noted the involvement of pathways that implicate the importance of the metabolic state of the hepatocyte in supporting LS development. Our study highlights important features of hepatocyte biology, and specifically the potential role of glypican-3, in mediating P. falciparum sporozoite invasion. Additionally, it establishes a simple in vitro system to study the LS with improved invasion efficiency. This work paves the way for the greater malaria and liver biology communities to explore fundamental questions of hepatocyte-pathogen interactions and extend the system to other human malaria parasite species, like P. vivax.

4.
BMC Res Notes ; 12(1): 182, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30922378

ABSTRACT

OBJECTIVE: A fundamental understanding of redox homeostasis in Anopheles gambiae midgut cells under different oxidative conditions is missing. Such knowledge can aid in the development of new malaria transmission-blocking strategies aimed at disrupting natural homeostatic processes in the mosquito during Plasmodium parasite uptake (i.e. blood feeding). The aim of this study was to understand how the An. gambiae midgut regulates oxidative stress to reactive oxygen species (ROS), especially to a potent ROS-inducer such as tert-Butyl hydroperoxide (tBHP). RESULTS: Initial studies using quantitative immunoblot indicated that the expression of the classical antioxidant protein An. gambiae thioredoxin-1 (AgTrx-1) remained unchanged across challenges with different concentrations of tBHP suggesting that additional mechanisms to regulate ROS may be involved. We therefore conducted a global proteomic survey, which revealed that An. gambiae midguts under low (50 µM) and high (200 µM) tBHP concentrations were enriched in proteins indicative of ribosomal/nucleolar stress. Ribosomal stress is an inherent cellular response to an imbalance in ribosomal proteins (RPs) due to cellular stress such as oxidative stress. Our data suggest that ribosomal/nucleolar stress is the primary cellular response in An. gambiae midguts under tBHP challenge. Considering these results, we discuss harnessing the ribosomal stress response as a potential malaria transmission-blocking strategy.


Subject(s)
Anopheles/metabolism , Cell Nucleolus/metabolism , Intestinal Mucosa/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Ribosomes/metabolism , tert-Butylhydroperoxide/metabolism , Animals
5.
Proteomes ; 6(4)2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30424486

ABSTRACT

Paraquat is a potent superoxide (O2-)-inducing agent that is capable of inducing an oxidative imbalance in the mosquito midgut. This oxidative imbalance can super-stress the malaria parasite, leading to arrested development in the mosquito midgut and reduced transmission. While several studies have explored the effect of paraquat on malaria parasites, a fundamental understanding of the mosquito response to this compound remains unknown. Here, we quantified the mosquito midgut proteomic response to a paraquat-laced sugar meal, and found that An. gambiae midguts were enriched in proteins that are indicative of cells under endoplasmic reticulum (ER) stress. We also carried out qRT-PCR analyses for nine prominent thioredoxin (Trx) and glutathione (GSH)-dependent genes in mosquito midguts post P. falciparum blood meal ingestion to evaluate the concordance between transcripts and proteins under different oxidative stress conditions. Our data revealed an absence of significant upregulation in the Trx and GSH-dependent genes following infected blood meal ingestion. These data suggest that the intrinsic tolerance of the mosquito midgut to paraquat-mediated oxidative stress is through an ER stress response. These data indicate that mosquitoes have at least two divergent pathways of managing the oxidative stress that is induced by exogenous compounds, and outline the potential application of paraquat-like drugs to act selectively against malaria parasite development in mosquito midguts, thereby blocking mosquito-to-human transmission.

SELECTION OF CITATIONS
SEARCH DETAIL
...