Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 8: e9670, 2020.
Article in English | MEDLINE | ID: mdl-32864211

ABSTRACT

Routinely censusing rhinoceros' populations is central to their conservation and protection from illegal killing. In Namibia, both white (Ceratotherium simum) and black (Diceros bicornis) rhinoceros occur on private land, in the latter case under a custodianship program of the Namibian Ministry of Environment and Tourism (MET). Black rhinoceros custodian landowners are responsible for the protection of the rhinoceroses on their land and are required to report regularly to the MET. Monitoring imposes a financial burden on custodians yet many of the techniques used involve expensive monitoring techniques that include the need for aerial support and/or animal instrumentation. During May and June 2018, WildTrack undertook a pilot study to census black and white rhinoceros on three private custodianship properties in Namibia. We tested three footprint identification methods for obtaining estimates of rhinoceros populations in an effort to provide less costly alternative monitoring options to rhinoceros custodians. The first was a full monitoring protocol with two components: (a) tracking each individual animal and matching them to their footprints, (b) identifying those individuals from the heel lines on the prints. The second method used simple visual heel line identification ex-situ, and the third method used just an objective footprint identification technique. These methods offer different options of fieldwork labour and cost and were designed to offer monitoring options to custodians that provided information about rhinoceros movement and location, with minimal disturbance to the rhinoceros, and best matched their human and economic resources. In this study, we describe the three methods and report the results of the pilot study to compare and evaluate their utility for rhinoceros monitoring. The first method successfully matched each trail photographed to a known rhinoceros at each site. When the other two methods disagreed with the first, they did so by failing to match single trails to a known rhinoceros, thereby creating fictitious identities consisting of a single trail. This failure occurred twice in one application, but otherwise at most once. We expect this failure can be eliminated through more stringent criteria for collecting photographs of footprints. We also briefly compare the use of footprint monitoring with other commonly used monitoring techniques. On this basis, landowners hosting rhinoceros can evaluate which method best suits their needs and resources.

2.
PeerJ ; 6: e5430, 2018.
Article in English | MEDLINE | ID: mdl-30128200

ABSTRACT

The proportion of females calving (PFC) each year has been employed as an indicator of population reproductive performance in ungulates, especially for species that breed annually, because it requires less detailed population data than inter-birthing intervals and age at first reproduction. For asynchronous breeders with inter-birthing intervals longer than a year such as megaherbivores, however, it is unclear how much annual variation in PFC is expected and whether false signals of density feedback or environmental influence might result from analyzing PFC data. We used census data from a well studied, closed, expanding population of black rhinoceros (Diceros bicornis) to study annual variation in PFC over 22 years. Our analysis of PFC data yielded no false signals of density feedback but weak evidence for an unexpected influence of rainfall. The PFC data exhibited considerable variation, which we attribute to autocorrelation in the time series of PFC data, 'demographic-founding effects', changes in stage structure, and demographic stochasticity, some of which the modelling of PFC appears to confuse with an influence of rainfall. We expect such variation to be common in introduced populations and to persist for some years, complicating the interpretation of PFC, though moving averages of PFC can help if employed cautiously. While our analysis does not undermine the possible utility of PFC, the analysis and interpretation of PFC values require care.

3.
PLoS One ; 13(2): e0191471, 2018.
Article in English | MEDLINE | ID: mdl-29444115

ABSTRACT

Long-term data are needed to explore the interaction of weather extremes with habitat alteration; in particular, can 'refugia' buffer population dynamics against climate change and are they robust to disturbances such as timber harvesting. Because forest bats are good indicators of ecosystem health, we used 14 years (1999-2012) of mark-recapture data from a suite of small tree-hollow roosting bats to estimate survival, abundance and body condition in harvested and unharvested forest and over extreme El Niño and La Niña weather events in southeastern Australia. Trapping was replicated within an experimental forest, located in a climate refuge, with different timber harvesting treatments. We trapped foraging bats and banded 3043 with a 32% retrap rate. Mark-recapture analyses allowed for dependence of survival on time, species, sex, logging treatment and for transients. A large portion of the population remained resident, with a maximum time to recapture of nine years. The effect of logging history (unlogged vs 16-30 years post-logging regrowth) on apparent survival was minor and species specific, with no detectable effect for two species, a positive effect for one and negative for the other. There was no effect of logging history on abundance or body condition for any of these species. Apparent survival of residents was not strongly influenced by weather variation (except for the smallest species), unlike previous studies outside of refugia. Despite annual variation in abundance and body condition across the 14 years of the study, no relationship with extreme weather was evident. The location of our study area in a climate refuge potentially buffered bat population dynamics from extreme weather. These results support the value of climate refugia in mitigating climate change impacts, though the lack of an external control highlights the need for further studies on the functioning of climate refugia. Relatively stable population dynamics were not compromised by timber harvesting, suggesting ecologically sustainable harvesting may be compatible with climate refugia.


Subject(s)
Chiroptera , Climate , Forests , Weather , Animals , Longevity , Population Dynamics , Probability
4.
Conserv Biol ; 32(3): 628-637, 2018 06.
Article in English | MEDLINE | ID: mdl-28940809

ABSTRACT

Success of animal translocations depends on improving postrelease demographic rates toward establishment and subsequent growth of released populations. Short-term metrics for evaluating translocation success and its drivers, like postrelease survival and fecundity, are unlikely to represent longer-term outcomes. We used information theory to investigate 25 years of data on black rhinoceros (Diceros bicornis) translocations. We used the offspring recruitment rate (ORR) of translocated females-a metric integrating survival, fecundity, and offspring recruitment at sexual maturity-to detect determinants of success. Our unambiguously best model (AICω = 0.986) predicted that ORR increases with female age at release as a function of lower postrelease adult rhinoceros sex ratio (males:females). Delay of first postrelease reproduction and failure of some females to recruit any calves to sexual maturity most influenced the pattern of ORRs, and the leading causes of recruitment failure were postrelease female death (23% of all females) and failure to calve (24% of surviving females). We recommend translocating older females (≥6 years old) because they do not exhibit the reproductive delay and low ORRs of juveniles (<4 years old) or the higher rates of recruitment failure of juveniles and young adults (4-5.9 years old). Where translocation of juveniles is necessary, they should be released into female-biased populations, where they have higher ORRs. Our study offers the unique advantage of a long-term analysis across a large number of replicate populations-a science-by-management experiment as a proxy for a manipulative experiment, and a rare opportunity, particularly for a large, critically endangered taxon such as the black rhinoceros. Our findings differ from previous recommendations, reinforce the importance of long-term data sets and comprehensive metrics of translocation success, and suggest attention be shifted from ecological to social constraints on population growth and species recovery, particularly when translocating species with polygynous breeding systems.


Subject(s)
Conservation of Natural Resources , Sex Ratio , Animals , Female , Fertility , Male , Perissodactyla , Reproduction
5.
PLoS One ; 12(2): e0172232, 2017.
Article in English | MEDLINE | ID: mdl-28234926

ABSTRACT

Raptors are exposed to a wide variety of human-related mortality agents, and yet population-level effects are rarely quantified. Doing so requires modeling vital rates in the context of species life-history, behavior, and population dynamics theory. In this paper, we explore the details of such an analysis by focusing on the demography of a resident, tree-nesting population of golden eagles (Aquila chrysaetos) in the vicinity of an extensive (142 km2) windfarm in California. During 1994-2000, we tracked the fates of >250 radio-marked individuals of four life-stages and conducted five annual surveys of territory occupancy and reproduction. Collisions with wind turbines accounted for 41% of 88 uncensored fatalities, most of which were subadults and nonbreeding adults (floaters). A consistent overall male preponderance in the population meant that females were the limiting sex in this territorial, monogamous species. Estimates of potential population growth rate and associated variance indicated a stable breeding population, but one for which any further decrease in vital rates would require immigrant floaters to fill territory vacancies. Occupancy surveys 5 and 13 years later (2005 and 2013) showed that the nesting population remained intact, and no upward trend was apparent in the proportion of subadult eagles as pair members, a condition that would have suggested a deficit of adult replacements. However, the number of golden eagle pairs required to support windfarm mortality was large. We estimated that the entire annual reproductive output of 216-255 breeding pairs would have been necessary to support published estimates of 55-65 turbine blade-strike fatalities per year. Although the vital rates forming the basis for these calculations may have changed since the data were collected, our approach should be useful for gaining a clearer understanding of how anthropogenic mortality affects the health of raptor populations, particularly those species with delayed maturity and naturally low reproductive rates.


Subject(s)
Conservation of Natural Resources , Population Dynamics , Raptors , Algorithms , Animals , California , Female , Fertility , Geography , Humans , Male , Models, Statistical , Population Growth , Seasons , Territoriality , Time Factors , Wind
6.
PLoS One ; 7(1): e30664, 2012.
Article in English | MEDLINE | ID: mdl-22295100

ABSTRACT

Species translocations are remarkable experiments in evolutionary ecology, and increasingly critical to biodiversity conservation. Elaborate socio-ecological hypotheses for translocation success, based on theoretical fitness relationships, are untested and lead to complex uncertainty rather than parsimonious solutions. We used an extraordinary 89 reintroduction and 102 restocking events releasing 682 black rhinoceros (Diceros bicornis) to 81 reserves in southern Africa (1981-2005) to test the influence of interacting socio-ecological and individual characters on post-release survival. We predicted that the socio-ecological context should feature more prominently after restocking than reintroduction because released rhinoceros interact with resident conspecifics. Instead, an interaction between release cohort size and habitat quality explained reintroduction success but only individuals' ages explained restocking outcomes. Achieving translocation success for many species may not be as complicated as theory suggests. Black rhino, and similarly asocial generalist herbivores without substantial predators, are likely to be resilient to ecological challenges and robust candidates for crisis management in a changing world.


Subject(s)
Animal Migration , Ecological and Environmental Phenomena , Herbivory , Perissodactyla , Social Behavior , Animals , Conservation of Natural Resources , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...