Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36992040

ABSTRACT

Railroads are a critical part of the United States' transportation sector. Over 40 percent (by weight) of the nation's freight is transported by rail, and according to the Bureau of Transportation statistics, railroads moved $186.5 billion of freight in 2021. A vital part of the freight network is railroad bridges, with a good number being low-clearance bridges that are prone to impacts from over-height vehicles; such impacts can cause damage to the bridge and lead to unwanted interruption in its usage. Therefore, the detection of impacts from over-height vehicles is critical for the safe operation and maintenance of railroad bridges. While some previous studies have been published regarding bridge impact detection, most approaches utilize more expensive wired sensors, as well as relying on simple threshold-based detection. The challenge is that the use of vibration thresholds may not accurately distinguish between impacts and other events, such as a common train crossing. In this paper, a machine learning approach is developed for accurate impact detection using event-triggered wireless sensors. The neural network is trained with key features which are extracted from event responses collected from two instrumented railroad bridges. The trained model classifies events as impacts, train crossings, or other events. An average classification accuracy of 98.67% is obtained from cross-validation, while the false positive rate is minimal. Finally, a framework for edge classification of events is also proposed and demonstrated using an edge device.

2.
Sensors (Basel) ; 22(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35271144

ABSTRACT

Civil infrastructure worldwide is subject to factors such as aging and deterioration. Structural health monitoring (SHM) can be used to assess the impact of these processes on structural performance. SHM demands have evolved from routine monitoring to real-time and autonomous assessment. One of the frontiers in achieving effective SHM systems has been the use of wireless smart sensors (WSSs), which are attractive compared to wired sensors, due to their flexibility of use, lower costs, and ease of long-term deployment. Most WSSs use accelerometers to collect global dynamic vibration data. However, obtaining local behaviors in a structure using measurands such as strain may also be desirable. While wireless strain sensors have previously been developed by some researchers, there is still a need for a high sensitivity wireless strain sensor that fully meets the general demands for monitoring large-scale civil infrastructure. In this paper, a framework for synchronized wireless high-fidelity acceleration and strain sensing, which is commonly termed multimetric sensing in the literature, is proposed. The framework is implemented on the Xnode, a next-generation wireless smart sensor platform, and integrates with the strain sensor for strain acquisition. An application of the multimetric sensing framework is illustrated for total displacement estimation. Finally, the potential of the proposed framework integrated with vision-based measurement systems for multi-point displacement estimation with camera-motion compensation is demonstrated. The proposed approach is verified experimentally, showing the potential of the developed framework for various SHM applications.


Subject(s)
Acceleration , Vibration , Monitoring, Physiologic
SELECTION OF CITATIONS
SEARCH DETAIL
...