Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(22): eaay4945, 2020 May.
Article in English | MEDLINE | ID: mdl-32518819

ABSTRACT

Atmospheric new-particle formation (NPF) affects climate by contributing to a large fraction of the cloud condensation nuclei (CCN). Highly oxygenated organic molecules (HOMs) drive the early particle growth and therefore substantially influence the survival of newly formed particles to CCN. Nitrogen oxide (NOx) is known to suppress the NPF driven by HOMs, but the underlying mechanism remains largely unclear. Here, we examine the response of particle growth to the changes of HOM formation caused by NOx. We show that NOx suppresses particle growth in general, but the suppression is rather nonuniform and size dependent, which can be quantitatively explained by the shifted HOM volatility after adding NOx. By illustrating how NOx affects the early growth of new particles, a critical step of CCN formation, our results help provide a refined assessment of the potential climatic effects caused by the diverse changes of NOx level in forest regions around the globe.

2.
Nat Commun ; 11(1): 1341, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32165628

ABSTRACT

Magnetic monopoles have been proposed as emergent quasiparticles in pyrochlore spin ice compounds. However, unlike semiconductors and two-dimensional electron gases where the charge degree of freedom can be actively controlled by chemical doping, interface modulation, and electrostatic gating, there is as of yet no analogue of these effects for emergent magnetic monopoles. To date, all experimental investigations have been limited to large ensembles comprised of equal numbers of monopoles and antimonopoles in bulk crystals. To address these issues, we propose the formation of a two-dimensional magnetic monopole gas (2DMG) with a net magnetic charge, confined at the interface between a spin ice and an isostructural antiferromagnetic pyrochlore iridate and whose monopole density can be controlled by an external field. Our proposal is based on Monte Carlo simulations of the thermodynamic and transport properties. This proposed 2DMG should enable experiments and devices which can be performed on magnetic monopoles, akin to two-dimensional electron gases in semiconductor heterostructures.

3.
Nature ; 532(7599): 343-7, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27074504

ABSTRACT

The quantum condensate of Cooper pairs forming a superconductor was originally conceived as being translationally invariant. In theory, however, pairs can exist with finite momentum Q, thus generating a state with a spatially modulated Cooper-pair density. Such a state has been created in ultracold (6)Li gas but never observed directly in any superconductor. It is now widely hypothesized that the pseudogap phase of the copper oxide superconductors contains such a 'pair density wave' state. Here we report the use of nanometre-resolution scanned Josephson tunnelling microscopy to image Cooper pair tunnelling from a d-wave superconducting microscope tip to the condensate of the superconductor Bi2Sr2CaCu2O8+x. We demonstrate condensate visualization capabilities directly by using the Cooper-pair density variations surrounding zinc impurity atoms and at the Bi2Sr2CaCu2O8+x crystal supermodulation. Then, by using Fourier analysis of scanned Josephson tunnelling images, we discover the direct signature of a Cooper-pair density modulation at wavevectors QP ≈ (0.25, 0)2π/a0 and (0, 0.25)2π/a0 in Bi2Sr2CaCu2O8+x. The amplitude of these modulations is about five per cent of the background condensate density and their form factor exhibits primarily s or s' symmetry. This phenomenology is consistent with Ginzburg-Landau theory when a charge density wave with d-symmetry form factor and wavevector QC = QP coexists with a d-symmetry superconductor; it is also predicted by several contemporary microscopic theories for the pseudogap phase.

4.
Science ; 344(6184): 612-6, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24812397

ABSTRACT

The existence of electronic symmetry breaking in the underdoped cuprates and its disappearance with increased hole density p are now widely reported. However, the relation between this transition and the momentum-space (k-space) electronic structure underpinning the superconductivity has not yet been established. Here, we visualize the Q = 0 (intra-unit-cell) and Q ≠ 0 (density-wave) broken-symmetry states, simultaneously with the coherent k-space topology, for Bi2Sr2CaCu2O(8+δ) samples spanning the phase diagram 0.06 ≤ p ≤ 0.23. We show that the electronic symmetry-breaking tendencies weaken with increasing p and disappear close to a critical doping p(c) = 0.19. Concomitantly, the coherent k-space topology undergoes an abrupt transition, from arcs to closed contours, at the same p(c). These data reveal that the k-space topology transformation in cuprates is linked intimately with the disappearance of the electronic symmetry breaking at a concealed critical point.

5.
Science ; 333(6041): 426-30, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21778393

ABSTRACT

We study the coexisting smectic modulations and intra-unit-cell nematicity in the pseudogap states of underdoped Bi(2)Sr(2)CaCu(2)O(8+δ). By visualizing their spatial components separately, we identified 2π topological defects throughout the phase-fluctuating smectic states. Imaging the locations of large numbers of these topological defects simultaneously with the fluctuations in the intra-unit-cell nematicity revealed strong empirical evidence for a coupling between them. From these observations, we propose a Ginzburg-Landau functional describing this coupling and demonstrate how it can explain the coexistence of the smectic and intra-unit-cell broken symmetries and also correctly predict their interplay at the atomic scale. This theoretical perspective can lead to unraveling the complexities of the phase diagram of cuprate high-critical-temperature superconductors.

6.
Nature ; 466(7304): 347-51, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20631795

ABSTRACT

In the high-transition-temperature (high-T(c)) superconductors the pseudogap phase becomes predominant when the density of doped holes is reduced. Within this phase it has been unclear which electronic symmetries (if any) are broken, what the identity of any associated order parameter might be, and which microscopic electronic degrees of freedom are active. Here we report the determination of a quantitative order parameter representing intra-unit-cell nematicity: the breaking of rotational symmetry by the electronic structure within each CuO(2) unit cell. We analyse spectroscopic-imaging scanning tunnelling microscope images of the intra-unit-cell states in underdoped Bi(2)Sr(2)CaCu(2)O(8 +) (delta) and, using two independent evaluation techniques, find evidence for electronic nematicity of the states close to the pseudogap energy. Moreover, we demonstrate directly that these phenomena arise from electronic differences at the two oxygen sites within each unit cell. If the characteristics of the pseudogap seen here and by other techniques all have the same microscopic origin, this phase involves weak magnetic states at the O sites that break 90 degrees -rotational symmetry within every CuO(2) unit cell.

SELECTION OF CITATIONS
SEARCH DETAIL
...