Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 276(36): 33596-607, 2001 Sep 07.
Article in English | MEDLINE | ID: mdl-11443126

ABSTRACT

The prostacyclin receptor (IP) is primarily coupled to G alpha(s)-dependent activation of adenylyl cyclase; however, a number of studies indicate that the IP may couple to other secondary effector systems perhaps in a species-specific manner. In the current study, we investigated the specificity of G protein:effector coupling by the mouse (m) IP overexpressed in human embryonic kidney 293 cells and endogenously expressed in murine erythroleukemia cells. The mIP exhibited efficient G alpha(s) coupling and concentration-dependent increases in cAMP generation in response to the IP agonist cicaprost; however, mIP also coupled to G alpha(i) decreasing the levels of cAMP in forskolin-treated cells. mIP coupling to G alpha(i) was pertussis toxin-sensitive and was dependent on protein kinase (PK) A activation status. In addition, the mIP coupled to phospholipase C (PLC) activation in a pertussis toxin-insensitive, G alpha(i)-, G beta gamma-, and PKC-independent but in a G alpha(q)- and PKA-dependent manner. Whole cell phosphorylation assays demonstrated that the mIP undergoes cicaprost-induced PKA phosphorylation. mIP(S357A), a site-directed mutant of mIP, efficiently coupled to G alpha(s) but failed to couple to G alpha(i) or to efficiently couple to G alpha(q):PLC. Moreover, mIP(S357A) did not undergo cicaprost-induced phosphorylation confirming that Ser(357) is the target residue for PKA-dependent phosphorylation. Finally, co-precipitation experiments permitted the detection of G alpha(s), G alpha(i), and G alpha(q) in the immunoprecipitates of mIP, whereas only G alpha(s) was co-precipitated with mIP(S357A) indicating that Ser(357) of mIP is essential for G alpha(i) and G alpha(q) interaction. Moreover, inhibition of PKA blocked co-precipitation of mIP with G alpha(i) or G alpha(q). Taken together our data indicate that the mIP, in addition to coupling to G alpha(s), couples to G alpha(i) and G alpha(q); however, G alpha(i) and G alpha(q) coupling is dependent on initial cicaprost-induced mIP:G alpha(s) coupling and phosphorylation of mIP by cAMP-dependent PKA where Ser(357) was identified as the target residue for PKA phosphorylation.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Epoprostenol/analogs & derivatives , Phosphorylation , Receptors, Prostaglandin/metabolism , Serine/chemistry , Adenylate Cyclase Toxin , Animals , Blotting, Western , Calcium/metabolism , Cell Line , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , Epoprostenol/pharmacology , GTP-Binding Proteins/metabolism , Humans , Inositol Phosphates/biosynthesis , Mice , Models, Biological , Mutagenesis, Site-Directed , Pertussis Toxin , Precipitin Tests , Protein Binding , Receptors, Epoprostenol , Signal Transduction , Time Factors , Type C Phospholipases/metabolism , Virulence Factors, Bordetella/pharmacology
2.
Br J Pharmacol ; 132(8): 1639-49, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11309234

ABSTRACT

The prostanoid-IP receptor may be unique among G protein coupled receptors in that it is isoprenylated. In this study, we investigated the effects of the statins lovastatin and cerivastatin on signalling by the mouse (m) IP and the human (h) IP receptors, over-expressed in human embryonic kidney (HEK) 293 cells and by the hIP receptor, endogenously expressed in human erythroleukaemia cells. Both statins significantly reduced IP receptor-mediated cyclic AMP generation and intracellular calcium ([Ca(2+)](i)) mobilization in a time and concentration dependent manner but had no effect on signalling by the non-isoprenylated beta(2) adrenergic receptor or by the human prostanoid-TP receptor isoforms. Cerivastatin (IC(50), 50 - 90 nM) was significantly more potent than lovastatin (IC(50), 0.80 - 4.2 microM) in inhibiting IP receptor signalling. Whereas IC(50) values indicated that the hIP receptor was significantly more sensitive than the mIP receptor to the statins, the extent of inhibition of cyclic AMP generation by the mIP receptor was significantly greater than that of the hIP receptor to either statin, even at the highest concentrations used. Pretreatment with either statin significantly reduced IP receptor mediated desensitization of signalling by the h.TPalpha, but not by the h.TPbeta, receptor isoform. These data generated in whole cells point to the possibility that statin therapy may interfere with IP receptor signalling in vivo; such interference may be extenuated under conditions where circulating statin levels are elevated and may account, in part, for some of the pleiotropic affects of the statins not attributed solely to their lipid lowering properties.


Subject(s)
Anticholesteremic Agents/pharmacology , Lovastatin/pharmacology , Pyridines/pharmacology , Receptors, Prostaglandin/drug effects , Signal Transduction/drug effects , Calcium/metabolism , Cell Line , Cyclic AMP/metabolism , Humans , Kinetics , Protein Prenylation , Radioligand Assay , Receptors, Epoprostenol , Transfection
3.
J Biol Chem ; 274(34): 23707-18, 1999 Aug 20.
Article in English | MEDLINE | ID: mdl-10446129

ABSTRACT

The prostacyclin receptor (IP), a G protein-coupled receptor, mediates the actions of the prostanoid prostacyclin and its mimetics. IPs from a number of species each contain identically conserved putative isoprenylation CAAX motifs, each with the sequence CSLC. Metabolic labeling of human embryonic kidney (HEK) 293 cells stably overexpressing the hemagluttinin epitope-tagged IP in the presence of [(3)H]mevalonolactone established that the mouse IP is isoprenylated. Studies involving in vitro assays confirmed that recombinant forms of the human and mouse IP are modified by carbon 15 farnesyl isoprenoids. Disruption of isoprenylation, by site-directed mutagenesis of Cys(414) to Ser(414), within the CAAX motif, abolished isoprenylation of IP(SSLC) both in vitro and in transfected cells. Scatchard analysis of the wild type (IP) and mutant (IP(SSLC)) receptor confirmed that each receptor exhibited high and low affinity binding sites for [(3)H]iloprost, which were not influenced by receptor isoprenylation. Whereas stable cell lines overexpressing IP generated significant agonist (iloprost and cicaprost)-mediated increases in cAMP relative to nontransfected cells, cAMP generation by IP(SSLC) cells was not significantly different from the control, nontransfected HEK 293 cells. Moreover, co-expression of the alpha (alpha) subunit of Gs generated significant augmentations in cAMP by IP but not by IP(SSLC) cells. Whereas IP also demonstrated significant, dose-dependent increases in [Ca(2+)](i) in response to iloprost or cicaprost compared with the nontransfected HEK 293 cells, mobilization of [Ca(2+)](i) by IP(SSLC) was significantly impaired. Co-transfection of cells with either Galpha(q) or Galpha(11) resulted in significant augmentation of agonist-mediated [Ca(2+)](i) mobilization by IP cells but not by IP(SSLC) cells or by the control, HEK 293 cells. In addition, inhibition of isoprenylation by lovastatin treatment significantly reduced agonist-mediated cAMP generation by IP in comparison to the nonisoprenylated beta(2) adrenergic receptor or nontreated cells. Hence, isoprenylation of IP does not influence ligand binding but is required for efficient coupling to the effectors adenylyl cyclase and phospholipase C.


Subject(s)
Protein Prenylation , Adenylyl Cyclases/metabolism , Animals , Base Sequence , Calcium/metabolism , Cyclic AMP/biosynthesis , Humans , Iloprost/metabolism , Lovastatin/pharmacology , Mice , Molecular Sequence Data , Mutagenesis, Site-Directed , Polyisoprenyl Phosphates/metabolism , Receptors, Epoprostenol , Receptors, Prostaglandin/metabolism , Sesquiterpenes , Structure-Activity Relationship , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...