Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Plankton Res ; 45(4): 677-692, 2023.
Article in English | MEDLINE | ID: mdl-37483906

ABSTRACT

Mesoscale oceanographic features influence the composition of zooplankton. Cyclonic eddies can promote upwelling and production of gelatinous zooplankton, which play critical roles in ocean biogeochemical cycling. We examined variation in assemblages of thaliaceans (salps, doliolids and pyrosomes) among mesoscale oceanographic features at the tropical-temperate boundary of the East Australian Current (EAC) in Spring 2019 and Autumn 2021. The influence of cyclonic eddies was examined in a large offshore cyclonic eddy in 2019 and a newly formed frontal eddy in 2021. Pyrosomes were most abundant in the offshore EAC jet, and salps and doliolids were most abundant in coastal features, including within eddies that were transported offshore. In 2019, Salpa fusiformis increased 4-fold over 8 days in the large cyclonic eddy, and in 2021, doliolids increased > 50-fold over 2 weeks in a chlorophyll-rich coastal eddy while abundances of other thaliaceans remained unchanged or decreased. Correlations between abundances of thaliaceans and chlorophyll-a concentrations across the 102 samples collected during both voyages revealed that doliolids occupy a wider range of chlorophyll-a concentrations than salps. Our observations indicate that doliolids thrive in productive shelf environments, salps occur in less productive shelf waters and pyrosomes are most abundant in oligotrophic waters of the south Coral Sea.

2.
PeerJ ; 9: e11954, 2021.
Article in English | MEDLINE | ID: mdl-34589293

ABSTRACT

Cryptic species have been detected across Metazoa, and while no apparent morphological features distinguish them, it should not impede taxonomists from formal descriptions. We accepted this challenge for the jellyfish genus Aurelia, which has a long and confusing taxonomic history. We demonstrate that morphological variability in Aurelia medusae overlaps across very distant geographic localities. Even though some morphological features seem responsible for most of the variation, regional geographic patterns of dissimilarities are lacking. This is further emphasized by morphological differences found when comparing lab-cultured Aurelia coerulea medusae with the diagnostic features in its recent redescription. Previous studies have also highlighted the difficulties in distinguishing Aurelia polyps and ephyrae, and their morphological plasticity. Therefore, mostly based on genetic data, we recognize 28 species of Aurelia, of which seven were already described, 10 are formally described herein, four are resurrected and seven remain undescribed. We present diagnostic genetic characters for all species and designate type materials for newly described and some resurrected species. Recognizing moon jellyfish diversity with formal names is vital for conservation efforts and other studies. This work clarifies the practical implications of molecular genetic data as diagnostic characters, and sheds light on the patterns and processes that generate crypsis.

3.
Biol Bull ; 231(2): 152-169, 2016 10.
Article in English | MEDLINE | ID: mdl-27820907

ABSTRACT

Species of the box jellyfish (Cubozoa) genus Alatina are notorious for their sting along the beaches of several localities of the Atlantic and Pacific. These species include Alatina alata on the Caribbean Island of Bonaire (the Netherlands), A. moseri in Hawaii, and A. mordens in Australia. Most cubozoans inhabit coastal waters, but Alatina is unusual in that specimens have also been collected in the open ocean at great depths. Alatina is notable in that populations form monthly aggregations for spermcast mating in conjunction with the lunar cycle. Nominal species are difficult to differentiate morphologically, and it has been unclear whether they are distinct or a single species with worldwide distribution. Here we report the results of a population genetic study, using nuclear and mitochondrial sequence data from four geographical localities. Our analyses revealed a general lack of geographic structure among Alatina populations, and slight though significant isolation by distance. These data corroborate morphological and behavioral similarities observed in the geographically disparate localities, and indicate the presence of a single, pantropically distributed species, Alatina alata. While repeated, human-mediated introductions of A. alata could explain the patterns we have observed, it seems more likely that genetic metapopulation cohesion is maintained via dispersal through the swimming medusa stage, and perhaps via dispersal of encysted planulae, which are described here for the first time in Alatina.


Subject(s)
Animal Distribution , Cubozoa/physiology , Animals , Cubozoa/classification , Cubozoa/genetics , DNA, Mitochondrial/genetics , Hawaii , Humans , Moon , Phylogeny , Reproduction , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...