Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JDS Commun ; 4(4): 260-264, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37521061

ABSTRACT

The dairy industry is known for its extensive use of artificial insemination, which has resulted in a population where most animals can be traced back to only a few sires. Due to their relatedness to the population, old influential sires could still contribute to the accuracy of genomic predictions. The objective of the study was to identify the impact of historically influential sires on the recent population. This was tested by constructing a genomic relationship matrix using recursion with different sets of sires. Differences in prediction accuracies with different sets are indicative of how important each set is. Recursion coefficients linking young animals to those sets reveal the relative importance of specific sires to the prediction accuracy of recent animals. The data included ∼10 million scores for stature and fore udder attachment (FUA) measured from 1983. Genotypes of 569,404 animals were available. Sire sets included the 100 most popular sires born within different time periods. Computations were with single-step genomic BLUP. In general, the younger sires had higher prediction accuracies than the oldest sires, even though they generally have fewer progeny. The accuracy of evaluation for stature was increased from 0.54 with the most popular sires born before 1981 to 0.69 with sires born from 2001 to 2010, while the accuracy for FUA increased from 0.47 to 0.61. The accuracy achieved using the overall 100 most used sires was 0.66 for stature and 0.58 for FUA. All 100 sires from each period were combined in a subset to determine the importance of each sire relative to all 400 animals in the combined subset. The highest relative impact of a sire that was born within the different time sets was 1.97 for Valiant (before 1981), 1.94 for Blackstar (1981 to 1990), 4.38 for Shottle (1991 to 2000), and 3.09 for Planet (2001 to 2010). The 3 sires among the 400 with the greatest impact were Shottle, Goldwyn (3.73), and Planet. The relative impact of a sire was not strongly related to the number of progeny. For instance, the relative impact of Durham with 34K progeny was 2.29, whereas the impact of O Man with 15K progeny was 3.13. The impact of a sire is also influenced by whether it was used as a sire of sires. Results show that younger sires are more relevant to the accuracy of breeding value prediction in the recent population.

2.
BMC Genomics ; 13: 536, 2012 Oct 06.
Article in English | MEDLINE | ID: mdl-23039970

ABSTRACT

BACKGROUND: Artificial insemination and genetic selection are major factors contributing to population stratification in dairy cattle. In this study, we analyzed the effect of sample stratification and the effect of stratification correction on results of a dairy genome-wide association study (GWAS). Three methods for stratification correction were used: the efficient mixed-model association expedited (EMMAX) method accounting for correlation among all individuals, a generalized least squares (GLS) method based on half-sib intraclass correlation, and a principal component analysis (PCA) approach. RESULTS: Historical pedigree data revealed that the 1,654 contemporary cows in the GWAS were all related when traced through approximately 10-15 generations of ancestors. Genome and phenotype stratifications had a striking overlap with the half-sib structure. A large elite half-sib family of cows contributed to the detection of favorable alleles that had low frequencies in the general population and high frequencies in the elite cows and contributed to the detection of X chromosome effects. All three methods for stratification correction reduced the number of significant effects. EMMAX method had the most severe reduction in the number of significant effects, and the PCA method using 20 principal components and GLS had similar significance levels. Removal of the elite cows from the analysis without using stratification correction removed many effects that were also removed by the three methods for stratification correction, indicating that stratification correction could have removed some true effects due to the elite cows. SNP effects with good consensus between different methods and effect size distributions from USDA's Holstein genomic evaluation included the DGAT1-NIBP region of BTA14 for production traits, a SNP 45kb upstream from PIGY on BTA6 and two SNPs in NIBP on BTA14 for protein percentage. However, most of these consensus effects had similar frequencies in the elite and average cows. CONCLUSIONS: Genetic selection and extensive use of artificial insemination contributed to overlapped genome, pedigree and phenotype stratifications. The presence of an elite cluster of cows was related to the detection of rare favorable alleles that had high frequencies in the elite cluster and low frequencies in the remaining cows. Methods for stratification correction could have removed some true effects associated with genetic selection.


Subject(s)
Breeding , Cattle/genetics , Genome-Wide Association Study , Selection, Genetic , Alleles , Animals , Dairying , Female , Gene Frequency , Genotyping Techniques , Least-Squares Analysis , Male , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Principal Component Analysis
3.
BMC Genomics ; 12: 408, 2011 Aug 11.
Article in English | MEDLINE | ID: mdl-21831322

ABSTRACT

BACKGROUND: Genome-wide association analysis is a powerful tool for annotating phenotypic effects on the genome and knowledge of genes and chromosomal regions associated with dairy phenotypes is useful for genome and gene-based selection. Here, we report results of a genome-wide analysis of predicted transmitting ability (PTA) of 31 production, health, reproduction and body conformation traits in contemporary Holstein cows. RESULTS: Genome-wide association analysis identified a number of candidate genes and chromosome regions associated with 31 dairy traits in contemporary U.S. Holstein cows. Highly significant genes and chromosome regions include: BTA13's GNAS region for milk, fat and protein yields; BTA7's INSR region and BTAX's LOC520057 and GRIA3 for daughter pregnancy rate, somatic cell score and productive life; BTA2's LRP1B for somatic cell score; BTA14's DGAT1-NIBP region for fat percentage; BTA1's FKBP2 for protein yields and percentage, BTA26's MGMT and BTA6's PDGFRA for protein percentage; BTA18's 53.9-58.7 Mb region for service-sire and daughter calving ease and service-sire stillbirth; BTA18's PGLYRP1-IGFL1 region for a large number of traits; BTA18's LOC787057 for service-sire stillbirth and daughter calving ease; BTA15's CD82, BTA23's DST and the MOCS1-LRFN2 region for daughter stillbirth; and BTAX's LOC520057 and GRIA3 for daughter pregnancy rate. For body conformation traits, BTA11, BTAX, BTA10, BTA5, and BTA26 had the largest concentrations of SNP effects, and PHKA2 of BTAX and REN of BTA16 had the most significant effects for body size traits. For body shape traits, BTAX, BTA19 and BTA3 were most significant. Udder traits were affected by BTA16, BTA22, BTAX, BTA2, BTA10, BTA11, BTA20, BTA22 and BTA25, teat traits were affected by BTA6, BTA7, BTA9, BTA16, BTA11, BTA26 and BTA17, and feet/legs traits were affected by BTA11, BTA13, BTA18, BTA20, and BTA26. CONCLUSIONS: Genome-wide association analysis identified a number of genes and chromosome regions associated with 31 production, health, reproduction and body conformation traits in contemporary Holstein cows. The results provide useful information for annotating phenotypic effects on the dairy genome and for building consensus of dairy QTL effects.


Subject(s)
Body Constitution , Cattle/genetics , Genetic Association Studies , Quantitative Trait, Heritable , Animals , Dairying , Female , Genotype , Milk , Phenotype , Polymorphism, Single Nucleotide , Pregnancy , Quantitative Trait Loci , Reproduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...