Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 18(7): 762-770, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28504698

ABSTRACT

Trafficking of tissue dendritic cells (DCs) via lymph is critical for the generation of cellular immune responses in draining lymph nodes (LNs). In the current study we found that DCs docked to the basolateral surface of lymphatic vessels and transited to the lumen through hyaluronan-mediated interactions with the lymph-specific endothelial receptor LYVE-1, in dynamic transmigratory-cup-like structures. Furthermore, we show that targeted deletion of the gene Lyve1, antibody blockade or depletion of the DC hyaluronan coat not only delayed lymphatic trafficking of dermal DCs but also blunted their capacity to prime CD8+ T cell responses in skin-draining LNs. Our findings uncovered a previously unknown function for LYVE-1 and show that transit through the lymphatic network is initiated by the recognition of leukocyte-derived hyaluronan.


Subject(s)
Dendritic Cells/immunology , Endothelial Cells/metabolism , Glycoproteins/genetics , Hyaluronic Acid/metabolism , Lymphatic Vessels/metabolism , Vesicular Transport Proteins/metabolism , Animals , Cell Movement/immunology , Dendritic Cells/metabolism , Endothelium, Lymphatic/cytology , Endothelium, Lymphatic/metabolism , Flow Cytometry , Glycoproteins/metabolism , Humans , Immunity, Cellular/immunology , Lymph Nodes/immunology , Membrane Transport Proteins , Mice , Mice, Knockout , Mice, Transgenic , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/immunology
2.
J Biol Chem ; 291(48): 25004-25018, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27733683

ABSTRACT

The lymphatic vessel endothelial receptor LYVE-1 is implicated in the uptake of hyaluronan (HA) and trafficking of leukocytes to draining lymph nodes. Yet LYVE-1 has only weak affinity for hyaluronan and depends on receptor clustering and higher order ligand organization for durable binding in lymphatic endothelium. An unusual feature of LYVE-1 not found in other HA receptors is the potential to form disulfide-linked homodimers. However, their influence on function has not been investigated. Here we show LYVE-1 homodimers are the predominant configuration in lymphatic endothelium in vitro and in vivo, and formation solely requires the unpaired cysteine residue Cys-201 within the membrane-proximal domain, yielding a 15-fold higher HA binding affinity and an ∼67-fold slower off-rate than the monomer. Moreover, we show non-dimerizing LYVE-1 mutants fail to bind HA even when expressed at high densities in lymphatic endothelial cells or artificially cross-linked with antibody. Consistent with these findings, small angle X-ray scattering (SAXS) indicates the Cys-201 interchain disulfide forms a hinge that maintains the homodimer in an "open scissors" conformation, likely allowing arrangement of the two HA binding domains for mutual engagement with ligand. Finally, we demonstrate the Cys-201 interchain disulfide is highly labile, and selective reduction with TCEP-HCl disrupts LYVE-1 homodimers, ablating HA binding. These findings reveal binding is dependent not just on clustering but also on the biochemical properties of LYVE-1 homodimers. They also mark LYVE-1 as the first Link protein superfamily member requiring covalent homodimerization for function and suggest the interchain disulfide acts as a redox switch in vivo.


Subject(s)
Endothelial Cells/metabolism , Endothelium, Lymphatic/metabolism , Hyaluronic Acid/metabolism , Protein Multimerization/physiology , Vesicular Transport Proteins/metabolism , Cysteine/genetics , Cysteine/metabolism , Disulfides/metabolism , Endothelial Cells/cytology , Endothelium, Lymphatic/cytology , Humans , Hyaluronic Acid/genetics , Oxidation-Reduction , Vesicular Transport Proteins/genetics
3.
J Biol Chem ; 291(15): 8014-30, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-26823460

ABSTRACT

The lymphatic endothelial receptor LYVE-1 has been implicated in both uptake of hyaluronan (HA) from tissue matrix and in facilitating transit of leukocytes and tumor cells through lymphatic vessels based largely onin vitrostudies with recombinant receptor in transfected fibroblasts. Curiously, however, LYVE-1 in lymphatic endothelium displays little if any binding to HAin vitro, and this has led to the conclusion that the native receptor is functionally silenced, a feature that is difficult to reconcile with its proposedin vivofunctions. Nonetheless, as we reported recently, LYVE-1 can function as a receptor for HA-encapsulated Group A streptococci and mediate lymphatic dissemination in mice. Here we resolve these paradoxical findings and show that the capacity of LYVE-1 to bind HA is strictly dependent on avidity, demanding appropriate receptor self-association and/or HA multimerization. In particular, we demonstrate the prerequisite of a critical LYVE-1 threshold density and show that HA binding may be elicited in lymphatic endothelium by surface clustering with divalent LYVE-1 mAbs. In addition, we show that cross-linking of biotinylated HA in streptavidin multimers or supramolecular complexes with the inflammation-induced protein TSG-6 enables binding even in the absence of LYVE-1 cross-linking. Finally, we show that endogenous HA on the surface of macrophages can engage LYVE-1, facilitating their adhesion and transit across lymphatic endothelium. These results reveal LYVE-1 as a low affinity receptor tuned to discriminate between different HA configurations through avidity and establish a new mechanistic basis for the functions ascribed to LYVE-1 in matrix HA binding and leukocyte traffickingin vivo.


Subject(s)
Endothelium, Lymphatic/cytology , Hyaluronic Acid/metabolism , Vesicular Transport Proteins/metabolism , Adult , Animals , Cell Adhesion , Cell Movement , Cells, Cultured , Endothelium, Lymphatic/metabolism , HEK293 Cells , Humans , Hyaluronan Receptors , Jurkat Cells , Macrophages/cytology , Macrophages/metabolism , Mice , Models, Molecular , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...