Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 11(5): e1005163, 2015 May.
Article in English | MEDLINE | ID: mdl-25933381

ABSTRACT

Pigmentation varies within and between species and is often adaptive. The amount of pigmentation on the abdomen of Drosophila melanogaster is a relatively simple morphological trait, which serves as a model for mapping the genetic basis of variation in complex phenotypes. Here, we assessed natural variation in female abdominal pigmentation in 175 sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel, derived from the Raleigh, NC population. We quantified the proportion of melanization on the two most posterior abdominal segments, tergites 5 and 6 (T5, T6). We found significant genetic variation in the proportion of melanization and high broad-sense heritabilities for each tergite. Genome-wide association studies identified over 150 DNA variants associated with the proportion of melanization on T5 (84), T6 (34), and the difference between T5 and T6 (35). Several of the top variants associated with variation in pigmentation are in tan, ebony, and bric-a-brac1, genes known to affect D. melanogaster abdominal pigmentation. Mutational analyses and targeted RNAi-knockdown showed that 17 out of 28 (61%) novel candidate genes implicated by the genome-wide association study affected abdominal pigmentation. Several of these genes are involved in developmental and regulatory pathways, chitin production, cuticle structure, and vesicle formation and transport. These findings show that genetic variation may affect multiple steps in pathways involved in tergite development and melanization. Variation in these novel candidates may serve as targets for adaptive evolution and sexual selection in D. melanogaster.


Subject(s)
Drosophila melanogaster/genetics , Pigmentation/genetics , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Evolution, Molecular , Female , Genetic Association Studies , Genetic Variation , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Proc Natl Acad Sci U S A ; 109(39): 15553-9, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-22949659

ABSTRACT

Epistasis-nonlinear genetic interactions between polymorphic loci-is the genetic basis of canalization and speciation, and epistatic interactions can be used to infer genetic networks affecting quantitative traits. However, the role that epistasis plays in the genetic architecture of quantitative traits is controversial. Here, we compared the genetic architecture of three Drosophila life history traits in the sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and a large outbred, advanced intercross population derived from 40 DGRP lines (Flyland). We assessed allele frequency changes between pools of individuals at the extremes of the distribution for each trait in the Flyland population by deep DNA sequencing. The genetic architecture of all traits was highly polygenic in both analyses. Surprisingly, none of the SNPs associated with the traits in Flyland replicated in the DGRP and vice versa. However, the majority of these SNPs participated in at least one epistatic interaction in the DGRP. Despite apparent additive effects at largely distinct loci in the two populations, the epistatic interactions perturbed common, biologically plausible, and highly connected genetic networks. Our analysis underscores the importance of epistasis as a principal factor that determines variation for quantitative traits and provides a means to uncover genetic networks affecting these traits. Knowledge of epistatic networks will contribute to our understanding of the genetic basis of evolutionarily and clinically important traits and enhance predictive ability at an individualized level in medicine and agriculture.


Subject(s)
Epistasis, Genetic/physiology , Genes, Insect/physiology , Quantitative Trait, Heritable , Animals , Drosophila melanogaster , Polymorphism, Single Nucleotide
3.
Nature ; 482(7384): 173-8, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22318601

ABSTRACT

A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype-phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype-phenotype mapping using the power of Drosophila genetics.


Subject(s)
Drosophila melanogaster/genetics , Genome-Wide Association Study , Genomics , Quantitative Trait Loci/genetics , Alleles , Animals , Centromere/genetics , Chromosomes, Insect/genetics , Genotype , Phenotype , Polymorphism, Single Nucleotide/genetics , Selection, Genetic/genetics , Starvation/genetics , Telomere/genetics , X Chromosome/genetics
4.
Nat Genet ; 41(3): 299-307, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19234471

ABSTRACT

Determining the genetic architecture of complex traits is challenging because phenotypic variation arises from interactions between multiple, environmentally sensitive alleles. We quantified genome-wide transcript abundance and phenotypes for six ecologically relevant traits in D. melanogaster wild-derived inbred lines. We observed 10,096 genetically variable transcripts and high heritabilities for all organismal phenotypes. The transcriptome is highly genetically intercorrelated, forming 241 transcriptional modules. Modules are enriched for transcripts in common pathways, gene ontology categories, tissue-specific expression and transcription factor binding sites. The high degree of transcriptional connectivity allows us to infer genetic networks and the function of predicted genes from annotations of other genes in the network. Regressions of organismal phenotypes on transcript abundance implicate several hundred candidate genes that form modules of biologically meaningful correlated transcripts affecting each phenotype. Overlapping transcripts in modules associated with different traits provide insight into the molecular basis of pleiotropy between complex traits.


Subject(s)
Drosophila melanogaster/genetics , Genetic Variation/physiology , Genetics, Population/methods , Quantitative Trait, Heritable , Amino Acid Sequence , Animals , Animals, Inbred Strains , Base Sequence , Chromosome Mapping , Female , Gene Regulatory Networks/physiology , Male , Molecular Sequence Data , Phenotype , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Homology, Amino Acid , Tissue Distribution
5.
Genetics ; 170(4): 1723-35, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15944368

ABSTRACT

Our ability to predict long-term responses to artificial and natural selection, and understand the mechanisms by which naturally occurring variation for quantitative traits is maintained, depends on detailed knowledge of the properties of spontaneous polygenic mutations, including the quantitative trait loci (QTL) at which mutations occur, mutation rates, and mutational effects. These parameters can be estimated by mapping QTL that cause divergence between mutation-accumulation lines that have been established from an inbred base population and selected for high and low trait values. Here, we have utilized quantitative complementation to deficiencies to map QTL at which spontaneous mutations affecting Drosophila abdominal and sternopleural bristle number have occurred in 11 replicate lines during 206 generations of divergent selection. Estimates of the numbers of mutations were consistent with diploid per-character mutation rates for bristle traits of 0.03. The ratio of the per-character mutation rate to total mutation rate (0.023) implies that >2% of the genome could affect just one bristle trait and that there must be extensive pleiotropy for quantitative phenotypes. The estimated mutational effects were not, however, additive and exhibited dependency on genetic background consistent with diminishing epistasis. However, these inferences must be tempered by the potential for epistatic interactions between spontaneous mutations and QTL affecting bristle number on the deficiency-bearing chromosomes, which could lead to overestimates in numbers of QTL and inaccurate inference of gene action.


Subject(s)
Chromosome Mapping , Drosophila melanogaster/genetics , Genes, Insect , Mutation , Quantitative Trait, Heritable , Animals , Genetic Complementation Test , Genetic Variation , Genome, Insect , Quantitative Trait Loci , Selection, Genetic , X Chromosome
SELECTION OF CITATIONS
SEARCH DETAIL
...