Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 2: 332, 2011.
Article in English | MEDLINE | ID: mdl-21629265

ABSTRACT

Pelagic seabirds are highly mobile, reducing the likelihood of allopatric speciation where disruption of gene flow between populations is caused by physically insurmountable, extrinsic barriers. Spatial segregation during the non-breeding season appears to provide an intrinsic barrier to gene flow among seabird populations that otherwise occupy nearby or overlapping regions during breeding, but how this is achieved remains unclear. Here we show that the two genetically distinct populations of Cook's petrel (Pterodroma cookii) exhibit transequatorial separation of non-breeding ranges at contemporary (ca. 2-3 yrs) and historical (ca. 100 yrs) time scales. Segregation during the non-breeding season per se appears as an unlikely barrier to gene flow. Instead we provide evidence that habitat specialization during the non-breeding season is associated with breeding asynchrony which, in conjunction with philopatry, restricts gene flow. Habitat specialization during breeding and non-breeding likely promotes evolutionary divergence between these two populations via local adaptation.


Subject(s)
Animal Migration , Birds/genetics , Genetic Variation , Adaptation, Physiological , Animals , Birds/physiology , Breeding , Gene Flow , Molecular Sequence Data , Seasons , Social Isolation
2.
J Microbiol Biotechnol ; 19(12): 1590-5, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20075624

ABSTRACT

Alternative methods for controlling bacterial endospore contamination are desired in a range of industries and applications. Attention has recently turned to natural products, such as essential oils, which have sporicidal activity. In this study, a selection of essential oils was investigated to identify those with activity against Bacillus subtilis spores. Spores were exposed to thirteen essential oils, and surviving spores were enumerated. Cardamom, tea tree, and juniper leaf oils were the most effective, reducing the number of viable spores by 3 logs at concentrations above 1%. Sporicidal activity was enhanced at high temperatures (60 degrees C) or longer exposure times (up to one week). Gas chromatography-mass spectrometry analysis identified the components of the active essential oils. However, none of the major oil components exhibited equivalent activity to the whole oils. The fact that oil components, either alone or in combination, did not show the same level of sporicidal activity as the complete oils suggested that minor components may be involved, or that these act synergistically with major components. Scanning electron microscopy was used to examine spores after exposure to essential oils and suggested that leakage of spore contents was the likely mode of sporicidal action. Our data have shown that essential oils exert sporicidal activity and may be useful in applications where bacterial spore reduction is desired.


Subject(s)
Bacillus subtilis/drug effects , Oils, Volatile/pharmacology , Spores, Bacterial/drug effects , Drug Synergism , Elettaria/chemistry , Gas Chromatography-Mass Spectrometry , Juniperus/chemistry , Melaleuca/chemistry , Microscopy, Electron, Scanning , Oils, Volatile/administration & dosage , Oils, Volatile/chemistry , Spores, Bacterial/ultrastructure , Temperature , Time Factors
3.
Mol Ecol Resour ; 9(2): 458-61, 2009 Mar.
Article in English | MEDLINE | ID: mdl-21564674

ABSTRACT

A lone petrel was shot from the decks of an Italian warship (the 'Magenta') while it was sailing the South Pacific Ocean in 1867, far from land. The species, unknown to science, was named the 'Magenta petrel' (Procellariiformes, Procellariidae, Pterodroma magentae). No other specimens of this bird were collected and the species it represented remained a complete enigma for over 100 years. We compared DNA sequence of the mitochondrial cytochrome b gene from the Magenta petrel to that of other petrels using phylogenetic methods and ancient DNA techniques. Our results strongly suggest that the Magenta petrel specimen is a Chatham Island taiko. Furthermore, given the collection location of the Magenta petrel, our finding indicates that the Chatham Island taiko forages far into the Pacific Ocean (near South America). This has implications for the conservation of the taiko, one of the world's rarest seabirds.

4.
Conserv Biol ; 22(5): 1267-76, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18717692

ABSTRACT

Many rare and endangered species are difficult to locate, observe, and study. Consequently, many individuals, breeding pairs, and even populations of such species could remain undetected. Genetic markers can potentially be used to detect the existence of undiscovered individuals and populations, and we propose a method to do so that requires 3 conditions. First, sampling of the known population(s) of the target species must be comprehensive. Second, the species must display a reasonable level of philopatry and genetic structuring. Third, individuals must be able to be caught outside of breeding locations (e.g., at courtship or feeding areas, in flight), and the level of recapture must be reasonably high. We applied our method to the Chatham Island Taiko (Pterodroma magentae), one of the world's most endangered seabirds. We sequenced the Taiko mitochondrial cytochrome b gene and both copies of a fragment of the duplicated domain I of the control region. Twenty-one haplotypes were revealed, including 4 (19%) not found in birds at known burrows. These results suggest there are more burrow groups yet to be located. The species is a pelagic gadfly petrel that inhabits land only in the breeding season during which it is nocturnal and nests in burrows. Taiko burrows are situated in dense forest in a remote area of Chatham Island, and are consequently difficult to locate and study. It is important that all Taiko burrows be discovered to enable monitoring and protection of the birds from exotic predators.


Subject(s)
Birds/genetics , Conservation of Natural Resources/methods , Genetic Markers/genetics , Genetics, Population , Homing Behavior/physiology , Animals , Base Sequence , Birds/physiology , Cluster Analysis , DNA, Mitochondrial/genetics , Haplotypes/genetics , Microsatellite Repeats/genetics , Molecular Sequence Data , New Zealand , Sequence Analysis, DNA , Species Specificity , Telemetry
SELECTION OF CITATIONS
SEARCH DETAIL
...