Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicology ; 28(2): 201-211, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30652235

ABSTRACT

Countless pharmaceuticals and endocrine disrupting chemicals (EDCs) exist on the market with more added each day. Many of these compounds are not removed during the wastewater treatment process and enter bodies of water in their active form. EDCs are known to have physiological and behavioral effects in exposed organisms. Exposure to the synthetic estrogen 17α-ethinylestradiol (EE2), a common EDC found in birth control pills, has been found to lead to population collapse after only a few generations in some fish species. Mechanisms identified as potential driving forces for collapse include feminization of males and altered fecundity in both sexes. However, an additional way in which EE2 could lead to population collapse is by altering courtship behavior, which could then change mating preferences and decrease mating opportunities. The current study had the following objectives: determine if exposing female Siamese fighting fish, Betta splendens, to EE2 changes mate choice in males; assess if the dose and duration of female exposure matters; and examine if exposing males to EE2 influences their mating preferences. Both unexposed and exposed males were presented with pairs of females that differed in EE2 dose and exposure duration. The results indicate that males were more responsive to EE2-exposed females than unexposed females, with males being most responsive to females exposed to the low versus high dose. Furthermore, exposed males responded less overall than unexposed males. If EE2 concentration increases in the environment, the likelihood of successful mating could decrease and, therefore, potentially lead to adverse population impacts.


Subject(s)
Ethinyl Estradiol/adverse effects , Mating Preference, Animal/drug effects , Perciformes/physiology , Water Pollutants, Chemical/adverse effects , Animals , Endocrine Disruptors/adverse effects , Estrogens/adverse effects , Female , Male , Reproduction/drug effects
2.
Environ Pollut ; 235: 1015-1021, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29366512

ABSTRACT

Components of boldness, such as activity level and locomotion, influence an individual's ability to avoid predators and acquire resources, generating fitness consequences. The presence of endocrine disrupting chemicals (EDCs) in the aquatic environment may affect fitness by changing morphology or altering behaviors like courtship and exploration. Most research on EDC-generated behavioral effects has focused on estrogen mimics and reproductive endpoints. Far fewer studies have examined the effects of other types of EDCs or measured non-reproductive behaviors. EDCs with antiandrogenic properties are present in waterways yet we know little about their effects on exposed individuals although they may produce effects similar to those caused by estrogen mimics because they act on the same hormonal pathway. To examine the effects of antiandrogens on boldness, this study exposed male Siamese fighting fish, Betta splendens, to a high or low dose of one of two antiandrogens, vinclozolin or flutamide, and observed behavior in three boldness assays, both before and after exposure. Overall, antiandrogen exposure increased boldness behavior, especially following exposure to the higher dose. Whether or not antiandrogen exposure influenced boldness, as well as the nature and intensity of the effect, was assay-dependent. This demonstrates the importance of studying EDC effects in a range of contexts and, at least within this species, suggests that antiandrogenic compounds may generate distinct physiological effects in different situations. How and why the behavioral effects differ from those caused by exposure to an estrogen mimic, as well as the potential consequences of increased activity levels, are discussed. Exposure to an antiandrogen, regardless of dose, produced elevated activity levels and altered shoaling and exploration in male Siamese fighting fish. These modifications may have fitness consequences.


Subject(s)
Aggression/drug effects , Androgen Antagonists/pharmacology , Endocrine Disruptors/pharmacology , Fishes/physiology , Sexual Behavior, Animal/drug effects , Animals , Estrogens/pharmacology , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...