Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 3: 13, 2013.
Article in English | MEDLINE | ID: mdl-23383403

ABSTRACT

PURPOSE: EGFR amplification and mutation (i.e., EGFRvIII) are found in 40% of primary GBM tumors and are believed to contribute to tumor development and therapeutic resistance. This study was designed to investigate how EGFR mutational status modulates response to multimodality treatment with cetuximab, an anti-EGFR inhibitor, the chemotherapeutic agent, temozolomide (TMZ), and radiation therapy (RT). METHODS AND MATERIALS: In vitro and in vivo experiments were performed on two isogenic U87 GBM cell lines: one overexpressing wildtype EGFR (U87wtEGFR) and the other overexpressing EGFRvIII (U87EGFRvIII). RESULTS: Xenografts harboring EGFRvIII were more sensitive to TMZ alone and TMZ in combination with RT and/or cetuximab than xenografts expressing wtEGFR. In vitro experiments demonstrated that U87EGFRvIII-expressing tumors appear to harbor defective DNA homologous recombination repair in the form of Rad51 processing. CONCLUSION: The difference in sensitivity between EGFR-expressing and EGFRvIII-expressing tumors to combined modality treatment may help in the future tailoring of GBM therapy to subsets of patients expressing more or less of the EGFR mutant.

2.
J Neurooncol ; 105(2): 181-90, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21516367

ABSTRACT

Glioblastomas (GBM) frequently overexpress the epidermal growth factor receptor (wtEGFR) or its mutant, EGFRvIII, contributing to chemo- and radioresistance. The current standard of care is surgery followed by radiation therapy with concurrent temozolomide (TMZ) followed by adjuvant TMZ. New treatment strategies for GBM include blockade of EGFR signaling and angiogenesis. Cediranib is a highly potent receptor tyrosine kinase inhibitor that inhibits all three VEGF receptors. This study investigated the radiosensitizing potential of cediranib in combination with TMZ in U87 GBM xenografts expressing wtEGFR or EGFRvIII. U87 GBM cells stably transfected with either wtEGFR or EGFRvIII were injected into the hind limbs of nude mice. Cediranib was dosed at 3 mg/kg daily five times a week orally for 2 weeks. TMZ was dosed at 10 mg/kg once only on day 0. Radiotherapy (RT) consisted of 3 fractions of 5 Gy (days 0-2). Cediranib did not radiosensitize either tumor type; however, cediranib did enhance the effectiveness of TMZ in both transfectants. Our results suggest that combining cediranib with temozolomide in the clinic will lead to improved tumor control.


Subject(s)
Dacarbazine/analogs & derivatives , ErbB Receptors/metabolism , Glioma/drug therapy , Glioma/radiotherapy , Quinazolines/therapeutic use , Radiation Tolerance/drug effects , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Combined Chemotherapy Protocols , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/radiotherapy , Cell Survival/drug effects , Cell Survival/radiation effects , Dacarbazine/therapeutic use , Glioma/metabolism , Humans , Immunoblotting , Mice , Mice, Nude , Temozolomide , Tumor Cells, Cultured , Tumor Stem Cell Assay , Vascular Endothelial Growth Factor A/metabolism , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...