Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 46(13): 2507-15, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17429464

ABSTRACT

The development of in situ chemical sensors is critical for present-day expeditionary oceanography and the new mode of ocean observing systems that we are entering. New sensors take a significant amount of time to develop; therefore, validation of techniques in the laboratory for use in the ocean environment is necessary. Laser-induced breakdown spectroscopy (LIBS) is a promising in situ technique for oceanography. Laboratory investigations on the feasibility of using LIBS to detect analytes in bulk liquids at oceanic pressures were carried out. LIBS was successfully used to detect dissolved Na, Mn, Ca, K, and Li at pressures up to 2.76 x 10(7) Pa. The effects of pressure, laser-pulse energy, interpulse delay, gate delay, temperature, and NaCl concentration on the LIBS signal were examined. An optimal range of laser-pulse energies was found to exist for analyte detection in bulk aqueous solutions at both low and high pressures. No pressure effect was seen on the emission intensity for Ca and Na, and an increase in emission intensity with increased pressure was seen for Mn. Using the dual-pulse technique for several analytes, a very short interpulse delay resulted in the greatest emission intensity. The presence of NaCl enhanced the emission intensity for Ca, but had no effect on peak intensity of Mn or K. Overall, increased pressure, the addition of NaCl to a solution, and temperature did not inhibit detection of analytes in solution and sometimes even enhanced the ability to detect the analytes. The results suggest that LIBS is a viable chemical sensing method for in situ analyte detection in high-pressure environments such as the deep ocean.

2.
Appl Spectrosc ; 61(2): 171-6, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17331308

ABSTRACT

Sequential-pulse (or dual-pulse) laser-induced breakdown spectroscopy (DP-LIBS) with an orthogonal spark orientation is described for elemental analysis of bulk aqueous solutions at pressures up to approximately 138 x 10(5) Pa (138 bar). The use of sequential laser pulses for excitation, when compared to single-pulse LIBS excitation (SP-LIBS), provides significant emission intensity enhancements for a wide range of elements in bulk solution and allows additional elements to be measured using LIBS. Our current investigations of high-pressure solutions reveal that increasing solution pressure leads to a significant decrease in DP-LIBS emission enhancements for all elements examined, such that we see little or no emission enhancements for pressures above 100 bar. Observed pressure effects on DP-LIBS enhancements are thought to result from pressure effects on the laser-induced bubble formed by the first laser pulse. These results provide insight into the feasibility and limitations of DP-LIBS for in situ multi-elemental detection in high-pressure aqueous environments like the deep ocean.

3.
Appl Spectrosc ; 61(12): 1295-300, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18198020

ABSTRACT

Autoinducer (AI) molecules are used by quorum sensing (QS) bacteria to communicate information about their environment and are critical to their ability to coordinate certain physiological activities. Studying how these organisms react to environmental stresses could provide insight into methods to control these activities. To this end, we are investigating spectroscopic methods of analysis that allow in situ measurements of these AI molecules under different environmental conditions. We found that for one class of AIs, N-acyl-homoserine lactones (AHLs), surface-enhanced Raman spectroscopy (SERS) is a method capable of performing such measurements in situ. SERS spectra of seven different AHLs with acyl chain lengths from 4 to 12 carbons were collected for the first time using Ag colloidal nanoparticles synthesized via both citrate and borohydride reduction methods. Strong SERS spectra were obtained in as little as 10 seconds for 80 microM solutions of AI that exhibited the strongest SERS response, whereas 20 seconds was typical for most AI SERS spectra collected during this study. Although all spectra were similar, significant differences were detected in the SERS spectra of C4-AHL and 3-oxo-C6-AHL and more subtle differences were noted between all AHLs. Initial results indicate a detection limit of approximately 10(-6)M for C6-AHL, which is within the limits of biologically relevant concentrations of AI molecules (nM-microM). Based on these results, the SERS method shows promise for monitoring AI molecule concentrations in situ, within biofilms containing QS bacteria. This new capability offers the possibility to "listen in" on chemical communications between bacteria in their natural environment as that environment is stressed.


Subject(s)
Acyl-Butyrolactones/chemistry , Bacteria/metabolism , Quorum Sensing , Spectrum Analysis, Raman/methods , Colloids/chemistry , Molecular Structure , Silver/chemistry
4.
Appl Spectrosc ; 60(7): 786-90, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16854267

ABSTRACT

Laser-induced breakdown spectroscopy (LIBS) is presented for detection of several Group I and II elements (e.g., Na, Ca, Li, and K), as well as Mn and CaOH, in bulk aqueous solution at pressures exceeding 2.76 x 10(7) Pa (276 bar). Preliminary investigations reveal only minor pressure effects on the emission intensity and line width for all elements examined. These effects are found to depend on detector timing and laser pulse energy. The results of these investigations have implications for potential applications of LIBS for in situ multi-elemental detection in deep-ocean environments.


Subject(s)
Ecosystem , Seawater/chemistry , Spectrum Analysis , Ions/chemistry , Lasers , Oceans and Seas , Pressure
5.
Appl Spectrosc ; 59(6): 769-75, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16053543

ABSTRACT

We have designed and demonstrated a standoff Raman system for detecting high explosive materials at distances up to 50 meters in ambient light conditions. In the system, light is collected using an 8-in. Schmidt-Cassegrain telescope fiber-coupled to an f/1.8 spectrograph with a gated intensified charge-coupled device (ICCD) detector. A frequency-doubled Nd : YAG (532 nm) pulsed (10 Hz) laser is used as the excitation source for measuring remote spectra of samples containing up to 8% explosive materials. The explosives RDX, TNT, and PETN as well as nitrate- and chlorate-containing materials were used to evaluate the performance of the system with samples placed at distances of 27 and 50 meters. Laser power studies were performed to determine the effects of laser heating and photodegradation on the samples. Raman signal levels were found to increase linearly with increasing laser energy up to approximately 3 x 10(6) W/cm2 for all samples except TNT, which showed some evidence of photo- or thermal degradation at higher laser power densities. Detector gate width studies showed that Raman spectra could be acquired in high levels of ambient light using a 10 microsecond gate width.


Subject(s)
Optics and Photonics/instrumentation , Pentaerythritol Tetranitrate/analysis , Security Measures , Spectrum Analysis, Raman/instrumentation , Terrorism/prevention & control , Triazines/analysis , Trinitrotoluene/analysis , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Equipment Design , Equipment Failure Analysis , Explosions/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...